Extensions 1→N→G→Q→1 with N=C2 and Q=D42Q8

Direct product G=N×Q with N=C2 and Q=D42Q8
dρLabelID
C2×D42Q864C2xD4:2Q8128,1803


Non-split extensions G=N.Q with N=C2 and Q=D42Q8
extensionφ:Q→Aut NdρLabelID
C2.1(D42Q8) = C42.98D4central extension (φ=1)64C2.1(D4:2Q8)128,534
C2.2(D42Q8) = D4⋊(C4⋊C4)central extension (φ=1)64C2.2(D4:2Q8)128,596
C2.3(D42Q8) = C4.Q810C4central extension (φ=1)128C2.3(D4:2Q8)128,652
C2.4(D42Q8) = C42.30Q8central extension (φ=1)128C2.4(D4:2Q8)128,680
C2.5(D42Q8) = C42.121D4central extension (φ=1)128C2.5(D4:2Q8)128,719
C2.6(D42Q8) = (C2×D4)⋊Q8central stem extension (φ=1)64C2.6(D4:2Q8)128,755
C2.7(D42Q8) = (C2×C8)⋊Q8central stem extension (φ=1)128C2.7(D4:2Q8)128,790
C2.8(D42Q8) = C4⋊C4.106D4central stem extension (φ=1)64C2.8(D4:2Q8)128,797
C2.9(D42Q8) = C4.(C4⋊Q8)central stem extension (φ=1)128C2.9(D4:2Q8)128,820
C2.10(D42Q8) = (C2×C8).169D4central stem extension (φ=1)64C2.10(D4:2Q8)128,826
C2.11(D42Q8) = (C2×C4).23Q16central stem extension (φ=1)128C2.11(D4:2Q8)128,832
C2.12(D42Q8) = D83Q8central stem extension (φ=1)164C2.12(D4:2Q8)128,962
C2.13(D42Q8) = D8.2Q8central stem extension (φ=1)324C2.13(D4:2Q8)128,963

׿
×
𝔽