Copied to
clipboard

G = C2xD4:2Q8order 128 = 27

Direct product of C2 and D4:2Q8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xD4:2Q8, C42.214D4, C42.327C23, D4:2(C2xQ8), (C2xD4):21Q8, C4:C8:74C22, C4:Q8:55C22, C4:C4.34C23, C4.69(C2xSD16), C4.Q8:57C22, C4.22(C22xQ8), (C2xC8).306C23, (C2xC4).269C24, (C2xC4).108SD16, (C22xC4).796D4, C23.865(C2xD4), C4.62(C22:Q8), (C2xD4).391C23, (C4xD4).313C22, C22.84(C2xSD16), C2.10(C22xSD16), (C22xC8).342C22, (C2xC42).815C22, C22.529(C22xD4), C22.97(C22:Q8), D4:C4.178C22, C22.117(C8:C22), (C22xC4).1539C23, (C22xD4).569C22, (C2xC4:C8):37C2, (C2xC4:Q8):32C2, (C2xC4xD4).81C2, (C2xC4.Q8):28C2, C4.79(C2xC4oD4), C2.20(C2xC8:C22), (C2xC4).317(C2xQ8), C2.50(C2xC22:Q8), (C2xC4).1432(C2xD4), (C2xD4:C4).31C2, (C2xC4).835(C4oD4), (C2xC4:C4).598C22, SmallGroup(128,1803)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C2xD4:2Q8
C1C2C4C2xC4C22xC4C22xD4C2xC4xD4 — C2xD4:2Q8
C1C2C2xC4 — C2xD4:2Q8
C1C23C2xC42 — C2xD4:2Q8
C1C2C2C2xC4 — C2xD4:2Q8

Generators and relations for C2xD4:2Q8
 G = < a,b,c,d,e | a2=b4=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, dcd-1=b2c, ece-1=bc, ede-1=d-1 >

Subgroups: 476 in 240 conjugacy classes, 116 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, C23, C23, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C24, D4:C4, C4:C8, C4.Q8, C2xC42, C2xC22:C4, C2xC4:C4, C2xC4:C4, C2xC4:C4, C4xD4, C4xD4, C4:Q8, C4:Q8, C22xC8, C23xC4, C22xD4, C22xQ8, C2xD4:C4, C2xC4:C8, C2xC4.Q8, D4:2Q8, C2xC4xD4, C2xC4:Q8, C2xD4:2Q8
Quotients: C1, C2, C22, D4, Q8, C23, SD16, C2xD4, C2xQ8, C4oD4, C24, C22:Q8, C2xSD16, C8:C22, C22xD4, C22xQ8, C2xC4oD4, D4:2Q8, C2xC22:Q8, C22xSD16, C2xC8:C22, C2xD4:2Q8

Smallest permutation representation of C2xD4:2Q8
On 64 points
Generators in S64
(1 15)(2 16)(3 13)(4 14)(5 9)(6 10)(7 11)(8 12)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 45)(34 46)(35 47)(36 48)(37 41)(38 42)(39 43)(40 44)(49 61)(50 62)(51 63)(52 64)(53 57)(54 58)(55 59)(56 60)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15)(17 20)(18 19)(21 24)(22 23)(25 28)(26 27)(29 32)(30 31)(33 35)(37 39)(41 43)(45 47)(49 51)(53 55)(57 59)(61 63)
(1 32 5 26)(2 29 6 27)(3 30 7 28)(4 31 8 25)(9 22 15 20)(10 23 16 17)(11 24 13 18)(12 21 14 19)(33 58 39 64)(34 59 40 61)(35 60 37 62)(36 57 38 63)(41 50 47 56)(42 51 48 53)(43 52 45 54)(44 49 46 55)
(1 47 5 41)(2 46 6 44)(3 45 7 43)(4 48 8 42)(9 37 15 35)(10 40 16 34)(11 39 13 33)(12 38 14 36)(17 61 23 59)(18 64 24 58)(19 63 21 57)(20 62 22 60)(25 53 31 51)(26 56 32 50)(27 55 29 49)(28 54 30 52)

G:=sub<Sym(64)| (1,15)(2,16)(3,13)(4,14)(5,9)(6,10)(7,11)(8,12)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,32,5,26)(2,29,6,27)(3,30,7,28)(4,31,8,25)(9,22,15,20)(10,23,16,17)(11,24,13,18)(12,21,14,19)(33,58,39,64)(34,59,40,61)(35,60,37,62)(36,57,38,63)(41,50,47,56)(42,51,48,53)(43,52,45,54)(44,49,46,55), (1,47,5,41)(2,46,6,44)(3,45,7,43)(4,48,8,42)(9,37,15,35)(10,40,16,34)(11,39,13,33)(12,38,14,36)(17,61,23,59)(18,64,24,58)(19,63,21,57)(20,62,22,60)(25,53,31,51)(26,56,32,50)(27,55,29,49)(28,54,30,52)>;

G:=Group( (1,15)(2,16)(3,13)(4,14)(5,9)(6,10)(7,11)(8,12)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,32,5,26)(2,29,6,27)(3,30,7,28)(4,31,8,25)(9,22,15,20)(10,23,16,17)(11,24,13,18)(12,21,14,19)(33,58,39,64)(34,59,40,61)(35,60,37,62)(36,57,38,63)(41,50,47,56)(42,51,48,53)(43,52,45,54)(44,49,46,55), (1,47,5,41)(2,46,6,44)(3,45,7,43)(4,48,8,42)(9,37,15,35)(10,40,16,34)(11,39,13,33)(12,38,14,36)(17,61,23,59)(18,64,24,58)(19,63,21,57)(20,62,22,60)(25,53,31,51)(26,56,32,50)(27,55,29,49)(28,54,30,52) );

G=PermutationGroup([[(1,15),(2,16),(3,13),(4,14),(5,9),(6,10),(7,11),(8,12),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,45),(34,46),(35,47),(36,48),(37,41),(38,42),(39,43),(40,44),(49,61),(50,62),(51,63),(52,64),(53,57),(54,58),(55,59),(56,60)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,16),(14,15),(17,20),(18,19),(21,24),(22,23),(25,28),(26,27),(29,32),(30,31),(33,35),(37,39),(41,43),(45,47),(49,51),(53,55),(57,59),(61,63)], [(1,32,5,26),(2,29,6,27),(3,30,7,28),(4,31,8,25),(9,22,15,20),(10,23,16,17),(11,24,13,18),(12,21,14,19),(33,58,39,64),(34,59,40,61),(35,60,37,62),(36,57,38,63),(41,50,47,56),(42,51,48,53),(43,52,45,54),(44,49,46,55)], [(1,47,5,41),(2,46,6,44),(3,45,7,43),(4,48,8,42),(9,37,15,35),(10,40,16,34),(11,39,13,33),(12,38,14,36),(17,61,23,59),(18,64,24,58),(19,63,21,57),(20,62,22,60),(25,53,31,51),(26,56,32,50),(27,55,29,49),(28,54,30,52)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4N4O4P4Q4R8A···8H
order12···222224···44···444448···8
size11···144442···24···488884···4

38 irreducible representations

dim1111111222224
type+++++++++-+
imageC1C2C2C2C2C2C2D4D4Q8SD16C4oD4C8:C22
kernelC2xD4:2Q8C2xD4:C4C2xC4:C8C2xC4.Q8D4:2Q8C2xC4xD4C2xC4:Q8C42C22xC4C2xD4C2xC4C2xC4C22
# reps1212811224842

Matrix representation of C2xD4:2Q8 in GL5(F17)

160000
016000
001600
000160
000016
,
10000
016000
001600
00001
000160
,
160000
016000
016100
00001
00010
,
10000
04000
041300
000016
00010
,
10000
011500
011600
000125
00055

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,1,0],[16,0,0,0,0,0,16,16,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,4,4,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,16,0],[1,0,0,0,0,0,1,1,0,0,0,15,16,0,0,0,0,0,12,5,0,0,0,5,5] >;

C2xD4:2Q8 in GAP, Magma, Sage, TeX

C_2\times D_4\rtimes_2Q_8
% in TeX

G:=Group("C2xD4:2Q8");
// GroupNames label

G:=SmallGroup(128,1803);
// by ID

G=gap.SmallGroup(128,1803);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,560,253,120,758,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=b^2*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<