p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8.2Q8, Q16.2Q8, C8.11SD16, C42.152D4, M5(2).7C22, C8.Q8⋊4C2, C8.2(C2×Q8), C8○D8.6C2, C8.C8⋊5C2, (C2×C8).134D4, D8⋊2C4.2C2, C8.81(C4○D4), C8.5Q8⋊12C2, C4.68(C2×SD16), (C4×C8).166C22, C4.Q8.4C22, (C2×C8).242C23, C4○D8.22C22, C4.52(C22⋊Q8), C2.13(D4⋊2Q8), C22.28(C8⋊C22), C8.C4.22C22, (C2×C4).284(C2×D4), SmallGroup(128,963)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8.2Q8
G = < a,b,c,d | a8=b2=1, c4=a4, d2=a6c2, bab=a-1, ac=ca, dad-1=a3, bc=cb, dbd-1=a5b, dcd-1=a4c3 >
Subgroups: 132 in 60 conjugacy classes, 30 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C16, C42, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C4○D4, C4×C8, C4≀C2, C4.Q8, C2.D8, C8.C4, M5(2), C42.C2, C8○D4, C4○D8, D8⋊2C4, C8.C8, C8.Q8, C8○D8, C8.5Q8, D8.2Q8
Quotients: C1, C2, C22, D4, Q8, C23, SD16, C2×D4, C2×Q8, C4○D4, C22⋊Q8, C2×SD16, C8⋊C22, D4⋊2Q8, D8.2Q8
Character table of D8.2Q8
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 2 | 8 | 2 | 2 | 4 | 4 | 8 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ12 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ13 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ16 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | 4 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | -2√-2 | 2√-2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | -2√-2 | 2√-2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 2√-2 | -2√-2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 2√-2 | -2√-2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 32)(24 31)
(1 17 3 19 5 21 7 23)(2 18 4 20 6 22 8 24)(9 31 15 29 13 27 11 25)(10 32 16 30 14 28 12 26)
(1 23)(2 18)(3 21)(4 24)(5 19)(6 22)(7 17)(8 20)(9 26 13 30)(10 29 14 25)(11 32 15 28)(12 27 16 31)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,32)(24,31), (1,17,3,19,5,21,7,23)(2,18,4,20,6,22,8,24)(9,31,15,29,13,27,11,25)(10,32,16,30,14,28,12,26), (1,23)(2,18)(3,21)(4,24)(5,19)(6,22)(7,17)(8,20)(9,26,13,30)(10,29,14,25)(11,32,15,28)(12,27,16,31)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,32)(24,31), (1,17,3,19,5,21,7,23)(2,18,4,20,6,22,8,24)(9,31,15,29,13,27,11,25)(10,32,16,30,14,28,12,26), (1,23)(2,18)(3,21)(4,24)(5,19)(6,22)(7,17)(8,20)(9,26,13,30)(10,29,14,25)(11,32,15,28)(12,27,16,31) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,32),(24,31)], [(1,17,3,19,5,21,7,23),(2,18,4,20,6,22,8,24),(9,31,15,29,13,27,11,25),(10,32,16,30,14,28,12,26)], [(1,23),(2,18),(3,21),(4,24),(5,19),(6,22),(7,17),(8,20),(9,26,13,30),(10,29,14,25),(11,32,15,28),(12,27,16,31)]])
Matrix representation of D8.2Q8 ►in GL4(𝔽17) generated by
5 | 12 | 0 | 0 |
5 | 5 | 0 | 0 |
0 | 0 | 12 | 12 |
0 | 0 | 5 | 12 |
0 | 0 | 12 | 12 |
0 | 0 | 5 | 12 |
5 | 12 | 0 | 0 |
5 | 5 | 0 | 0 |
14 | 14 | 0 | 0 |
3 | 14 | 0 | 0 |
0 | 0 | 14 | 14 |
0 | 0 | 3 | 14 |
14 | 14 | 0 | 0 |
14 | 3 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 4 |
G:=sub<GL(4,GF(17))| [5,5,0,0,12,5,0,0,0,0,12,5,0,0,12,12],[0,0,5,5,0,0,12,5,12,5,0,0,12,12,0,0],[14,3,0,0,14,14,0,0,0,0,14,3,0,0,14,14],[14,14,0,0,14,3,0,0,0,0,13,0,0,0,0,4] >;
D8.2Q8 in GAP, Magma, Sage, TeX
D_8._2Q_8
% in TeX
G:=Group("D8.2Q8");
// GroupNames label
G:=SmallGroup(128,963);
// by ID
G=gap.SmallGroup(128,963);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,280,141,512,422,2019,248,1684,998,102,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=1,c^4=a^4,d^2=a^6*c^2,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^3,b*c=c*b,d*b*d^-1=a^5*b,d*c*d^-1=a^4*c^3>;
// generators/relations
Export