Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4.Q8

Direct product G=N×Q with N=C2 and Q=C2×C4.Q8
dρLabelID
C22×C4.Q8128C2^2xC4.Q8128,1639


Non-split extensions G=N.Q with N=C2 and Q=C2×C4.Q8
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4.Q8) = C2×C82C8central extension (φ=1)128C2.1(C2xC4.Q8)128,294
C2.2(C2×C4.Q8) = C2×C22.4Q16central extension (φ=1)128C2.2(C2xC4.Q8)128,466
C2.3(C2×C4.Q8) = C4×C4.Q8central extension (φ=1)128C2.3(C2xC4.Q8)128,506
C2.4(C2×C4.Q8) = C88M4(2)central stem extension (φ=1)64C2.4(C2xC4.Q8)128,298
C2.5(C2×C4.Q8) = C42.90D4central stem extension (φ=1)64C2.5(C2xC4.Q8)128,302
C2.6(C2×C4.Q8) = C24.133D4central stem extension (φ=1)64C2.6(C2xC4.Q8)128,539
C2.7(C2×C4.Q8) = C42.55Q8central stem extension (φ=1)128C2.7(C2xC4.Q8)128,566
C2.8(C2×C4.Q8) = C42.58Q8central stem extension (φ=1)128C2.8(C2xC4.Q8)128,576
C2.9(C2×C4.Q8) = C24.159D4central stem extension (φ=1)64C2.9(C2xC4.Q8)128,585
C2.10(C2×C4.Q8) = C42.30Q8central stem extension (φ=1)128C2.10(C2xC4.Q8)128,680
C2.11(C2×C4.Q8) = C2×C8.Q8central stem extension (φ=1)32C2.11(C2xC4.Q8)128,886
C2.12(C2×C4.Q8) = M5(2)⋊3C4central stem extension (φ=1)324C2.12(C2xC4.Q8)128,887

׿
×
𝔽