Copied to
clipboard

G = C2×C82C8order 128 = 27

Direct product of C2 and C82C8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C82C8, C42.48Q8, C42.317D4, C42.619C23, C88(C2×C8), (C2×C8)⋊7C8, C4(C82C8), (C4×C8).31C4, C4.10(C4⋊C8), (C22×C8).39C4, C4.24(C22×C8), C4.97(C2×SD16), C4.17(C4.Q8), (C22×C4).72Q8, C4⋊C8.263C22, C23.79(C4⋊C4), C22.20(C4⋊C8), (C4×C8).423C22, C42.307(C2×C4), (C2×C4).127SD16, (C22×C4).809D4, C4.39(C2×M4(2)), (C2×C4).73M4(2), C22.14(C4.Q8), C22.10(C8.C4), (C2×C42).1038C22, C2.4(C2×C4⋊C8), (C2×C4×C8).51C2, (C2×C4)(C82C8), (C2×C4⋊C8).16C2, C2.1(C2×C4.Q8), (C2×C4).80(C2×C8), (C2×C8).230(C2×C4), C2.1(C2×C8.C4), C22.45(C2×C4⋊C4), (C2×C4).146(C2×Q8), (C2×C4).114(C4⋊C4), (C2×C4).1455(C2×D4), (C22×C4).471(C2×C4), (C2×C4).501(C22×C4), SmallGroup(128,294)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2×C82C8
C1C2C22C2×C4C42C2×C42C2×C4×C8 — C2×C82C8
C1C2C4 — C2×C82C8
C1C22×C4C2×C42 — C2×C82C8
C1C22C22C42 — C2×C82C8

Generators and relations for C2×C82C8
 G = < a,b,c | a2=b8=c8=1, ab=ba, ac=ca, cbc-1=b3 >

Subgroups: 140 in 100 conjugacy classes, 76 normal (26 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, C22×C4, C4×C8, C4⋊C8, C4⋊C8, C2×C42, C22×C8, C22×C8, C82C8, C2×C4×C8, C2×C4⋊C8, C2×C82C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C23, C4⋊C4, C2×C8, M4(2), SD16, C22×C4, C2×D4, C2×Q8, C4⋊C8, C4.Q8, C8.C4, C2×C4⋊C4, C22×C8, C2×M4(2), C2×SD16, C82C8, C2×C4⋊C8, C2×C4.Q8, C2×C8.C4, C2×C82C8

Smallest permutation representation of C2×C82C8
Regular action on 128 points
Generators in S128
(1 34)(2 35)(3 36)(4 37)(5 38)(6 39)(7 40)(8 33)(9 117)(10 118)(11 119)(12 120)(13 113)(14 114)(15 115)(16 116)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(41 82)(42 83)(43 84)(44 85)(45 86)(46 87)(47 88)(48 81)(49 77)(50 78)(51 79)(52 80)(53 73)(54 74)(55 75)(56 76)(57 69)(58 70)(59 71)(60 72)(61 65)(62 66)(63 67)(64 68)(89 102)(90 103)(91 104)(92 97)(93 98)(94 99)(95 100)(96 101)(105 128)(106 121)(107 122)(108 123)(109 124)(110 125)(111 126)(112 127)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 65 103 118 21 49 86 123)(2 68 104 113 22 52 87 126)(3 71 97 116 23 55 88 121)(4 66 98 119 24 50 81 124)(5 69 99 114 17 53 82 127)(6 72 100 117 18 56 83 122)(7 67 101 120 19 51 84 125)(8 70 102 115 20 54 85 128)(9 30 76 42 107 39 60 95)(10 25 77 45 108 34 61 90)(11 28 78 48 109 37 62 93)(12 31 79 43 110 40 63 96)(13 26 80 46 111 35 64 91)(14 29 73 41 112 38 57 94)(15 32 74 44 105 33 58 89)(16 27 75 47 106 36 59 92)

G:=sub<Sym(128)| (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,33)(9,117)(10,118)(11,119)(12,120)(13,113)(14,114)(15,115)(16,116)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,81)(49,77)(50,78)(51,79)(52,80)(53,73)(54,74)(55,75)(56,76)(57,69)(58,70)(59,71)(60,72)(61,65)(62,66)(63,67)(64,68)(89,102)(90,103)(91,104)(92,97)(93,98)(94,99)(95,100)(96,101)(105,128)(106,121)(107,122)(108,123)(109,124)(110,125)(111,126)(112,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,65,103,118,21,49,86,123)(2,68,104,113,22,52,87,126)(3,71,97,116,23,55,88,121)(4,66,98,119,24,50,81,124)(5,69,99,114,17,53,82,127)(6,72,100,117,18,56,83,122)(7,67,101,120,19,51,84,125)(8,70,102,115,20,54,85,128)(9,30,76,42,107,39,60,95)(10,25,77,45,108,34,61,90)(11,28,78,48,109,37,62,93)(12,31,79,43,110,40,63,96)(13,26,80,46,111,35,64,91)(14,29,73,41,112,38,57,94)(15,32,74,44,105,33,58,89)(16,27,75,47,106,36,59,92)>;

G:=Group( (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,33)(9,117)(10,118)(11,119)(12,120)(13,113)(14,114)(15,115)(16,116)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,81)(49,77)(50,78)(51,79)(52,80)(53,73)(54,74)(55,75)(56,76)(57,69)(58,70)(59,71)(60,72)(61,65)(62,66)(63,67)(64,68)(89,102)(90,103)(91,104)(92,97)(93,98)(94,99)(95,100)(96,101)(105,128)(106,121)(107,122)(108,123)(109,124)(110,125)(111,126)(112,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,65,103,118,21,49,86,123)(2,68,104,113,22,52,87,126)(3,71,97,116,23,55,88,121)(4,66,98,119,24,50,81,124)(5,69,99,114,17,53,82,127)(6,72,100,117,18,56,83,122)(7,67,101,120,19,51,84,125)(8,70,102,115,20,54,85,128)(9,30,76,42,107,39,60,95)(10,25,77,45,108,34,61,90)(11,28,78,48,109,37,62,93)(12,31,79,43,110,40,63,96)(13,26,80,46,111,35,64,91)(14,29,73,41,112,38,57,94)(15,32,74,44,105,33,58,89)(16,27,75,47,106,36,59,92) );

G=PermutationGroup([[(1,34),(2,35),(3,36),(4,37),(5,38),(6,39),(7,40),(8,33),(9,117),(10,118),(11,119),(12,120),(13,113),(14,114),(15,115),(16,116),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(41,82),(42,83),(43,84),(44,85),(45,86),(46,87),(47,88),(48,81),(49,77),(50,78),(51,79),(52,80),(53,73),(54,74),(55,75),(56,76),(57,69),(58,70),(59,71),(60,72),(61,65),(62,66),(63,67),(64,68),(89,102),(90,103),(91,104),(92,97),(93,98),(94,99),(95,100),(96,101),(105,128),(106,121),(107,122),(108,123),(109,124),(110,125),(111,126),(112,127)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,65,103,118,21,49,86,123),(2,68,104,113,22,52,87,126),(3,71,97,116,23,55,88,121),(4,66,98,119,24,50,81,124),(5,69,99,114,17,53,82,127),(6,72,100,117,18,56,83,122),(7,67,101,120,19,51,84,125),(8,70,102,115,20,54,85,128),(9,30,76,42,107,39,60,95),(10,25,77,45,108,34,61,90),(11,28,78,48,109,37,62,93),(12,31,79,43,110,40,63,96),(13,26,80,46,111,35,64,91),(14,29,73,41,112,38,57,94),(15,32,74,44,105,33,58,89),(16,27,75,47,106,36,59,92)]])

56 conjugacy classes

class 1 2A···2G4A···4H4I···4P8A···8P8Q···8AF
order12···24···44···48···88···8
size11···11···12···22···24···4

56 irreducible representations

dim11111112222222
type+++++-+-
imageC1C2C2C2C4C4C8D4Q8D4Q8M4(2)SD16C8.C4
kernelC2×C82C8C82C8C2×C4×C8C2×C4⋊C8C4×C8C22×C8C2×C8C42C42C22×C4C22×C4C2×C4C2×C4C22
# reps141244161111488

Matrix representation of C2×C82C8 in GL4(𝔽17) generated by

1000
01600
0010
0001
,
16000
0100
0020
0008
,
2000
0100
00016
0010
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,1,0,0,0,0,2,0,0,0,0,8],[2,0,0,0,0,1,0,0,0,0,0,1,0,0,16,0] >;

C2×C82C8 in GAP, Magma, Sage, TeX

C_2\times C_8\rtimes_2C_8
% in TeX

G:=Group("C2xC8:2C8");
// GroupNames label

G:=SmallGroup(128,294);
// by ID

G=gap.SmallGroup(128,294);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,64,1123,136,172]);
// Polycyclic

G:=Group<a,b,c|a^2=b^8=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

׿
×
𝔽