Extensions 1→N→G→Q→1 with N=C2 and Q=C84D4

Direct product G=N×Q with N=C2 and Q=C84D4
dρLabelID
C2×C84D464C2xC8:4D4128,1876


Non-split extensions G=N.Q with N=C2 and Q=C84D4
extensionφ:Q→Aut NdρLabelID
C2.1(C84D4) = C42.59Q8central extension (φ=1)128C2.1(C8:4D4)128,577
C2.2(C84D4) = C42.432D4central extension (φ=1)64C2.2(C8:4D4)128,689
C2.3(C84D4) = (C2×C4)⋊6D8central extension (φ=1)64C2.3(C8:4D4)128,702
C2.4(C84D4) = C85D8central stem extension (φ=1)64C2.4(C8:4D4)128,438
C2.5(C84D4) = C825C2central stem extension (φ=1)64C2.5(C8:4D4)128,441
C2.6(C84D4) = C84D8central stem extension (φ=1)64C2.6(C8:4D4)128,444
C2.7(C84D4) = C84Q16central stem extension (φ=1)128C2.7(C8:4D4)128,445
C2.8(C84D4) = C83D8central stem extension (φ=1)64C2.8(C8:4D4)128,453
C2.9(C84D4) = C8.2D8central stem extension (φ=1)64C2.9(C8:4D4)128,454
C2.10(C84D4) = (C2×C4)⋊2D8central stem extension (φ=1)64C2.10(C8:4D4)128,743
C2.11(C84D4) = (C2×C4).27D8central stem extension (φ=1)64C2.11(C8:4D4)128,825
C2.12(C84D4) = C4⋊D16central stem extension (φ=1)64C2.12(C8:4D4)128,978
C2.13(C84D4) = C4⋊Q32central stem extension (φ=1)128C2.13(C8:4D4)128,979
C2.14(C84D4) = C165D4central stem extension (φ=1)64C2.14(C8:4D4)128,980
C2.15(C84D4) = C8.21D8central stem extension (φ=1)64C2.15(C8:4D4)128,981
C2.16(C84D4) = C163D4central stem extension (φ=1)64C2.16(C8:4D4)128,982
C2.17(C84D4) = C8.7D8central stem extension (φ=1)64C2.17(C8:4D4)128,983

׿
×
𝔽