p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊3D8, C42.668C23, C4.5(C2×D8), C8⋊5D4⋊2C2, C8⋊4D4⋊5C2, C8⋊C8⋊14C2, (C2×C8).37D4, C4.4D8⋊10C2, C2.8(C8⋊4D4), C4.6(C8⋊C22), C4⋊Q8.92C22, C2.11(C8⋊3D4), (C4×C8).154C22, C4⋊1D4.51C22, C22.69(C4⋊1D4), (C2×C4).725(C2×D4), SmallGroup(128,453)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊3D8
G = < a,b,c | a8=b8=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >
Subgroups: 384 in 121 conjugacy classes, 40 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C4⋊C4, C2×C8, D8, SD16, C2×D4, C2×Q8, C4×C8, C4×C8, D4⋊C4, C4⋊1D4, C4⋊1D4, C4⋊Q8, C2×D8, C2×SD16, C8⋊C8, C4.4D8, C8⋊5D4, C8⋊4D4, C8⋊4D4, C8⋊3D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4⋊1D4, C2×D8, C8⋊C22, C8⋊4D4, C8⋊3D4, C8⋊3D8
Character table of C8⋊3D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 1 | 1 | 16 | 16 | 16 | 2 | 2 | 2 | 2 | 2 | 2 | 16 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | √2 | √2 | -√2 | √2 | 0 | -√2 | √2 | 2 | -√2 | -√2 | -2 | 0 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | √2 | √2 | √2 | -√2 | 0 | -√2 | -√2 | -2 | -√2 | √2 | 2 | 0 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | √2 | -√2 | -2 | -√2 | √2 | 0 | √2 | -√2 | 0 | 2 | orthogonal lifted from D8 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | √2 | -√2 | 2 | √2 | √2 | 0 | -√2 | -√2 | 0 | -2 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -√2 | -√2 | -√2 | √2 | 0 | √2 | √2 | -2 | √2 | -√2 | 2 | 0 | orthogonal lifted from D8 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -√2 | -√2 | √2 | -√2 | 0 | √2 | -√2 | 2 | √2 | √2 | -2 | 0 | orthogonal lifted from D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | -√2 | √2 | 2 | -√2 | -√2 | 0 | √2 | √2 | 0 | -2 | orthogonal lifted from D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | -√2 | √2 | -2 | √2 | -√2 | 0 | -√2 | √2 | 0 | 2 | orthogonal lifted from D8 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 25 18 46 39 51 61 9)(2 30 19 43 40 56 62 14)(3 27 20 48 33 53 63 11)(4 32 21 45 34 50 64 16)(5 29 22 42 35 55 57 13)(6 26 23 47 36 52 58 10)(7 31 24 44 37 49 59 15)(8 28 17 41 38 54 60 12)
(1 61)(2 60)(3 59)(4 58)(5 57)(6 64)(7 63)(8 62)(10 16)(11 15)(12 14)(17 40)(18 39)(19 38)(20 37)(21 36)(22 35)(23 34)(24 33)(25 51)(26 50)(27 49)(28 56)(29 55)(30 54)(31 53)(32 52)(41 43)(44 48)(45 47)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25,18,46,39,51,61,9)(2,30,19,43,40,56,62,14)(3,27,20,48,33,53,63,11)(4,32,21,45,34,50,64,16)(5,29,22,42,35,55,57,13)(6,26,23,47,36,52,58,10)(7,31,24,44,37,49,59,15)(8,28,17,41,38,54,60,12), (1,61)(2,60)(3,59)(4,58)(5,57)(6,64)(7,63)(8,62)(10,16)(11,15)(12,14)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,51)(26,50)(27,49)(28,56)(29,55)(30,54)(31,53)(32,52)(41,43)(44,48)(45,47)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25,18,46,39,51,61,9)(2,30,19,43,40,56,62,14)(3,27,20,48,33,53,63,11)(4,32,21,45,34,50,64,16)(5,29,22,42,35,55,57,13)(6,26,23,47,36,52,58,10)(7,31,24,44,37,49,59,15)(8,28,17,41,38,54,60,12), (1,61)(2,60)(3,59)(4,58)(5,57)(6,64)(7,63)(8,62)(10,16)(11,15)(12,14)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,51)(26,50)(27,49)(28,56)(29,55)(30,54)(31,53)(32,52)(41,43)(44,48)(45,47) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,25,18,46,39,51,61,9),(2,30,19,43,40,56,62,14),(3,27,20,48,33,53,63,11),(4,32,21,45,34,50,64,16),(5,29,22,42,35,55,57,13),(6,26,23,47,36,52,58,10),(7,31,24,44,37,49,59,15),(8,28,17,41,38,54,60,12)], [(1,61),(2,60),(3,59),(4,58),(5,57),(6,64),(7,63),(8,62),(10,16),(11,15),(12,14),(17,40),(18,39),(19,38),(20,37),(21,36),(22,35),(23,34),(24,33),(25,51),(26,50),(27,49),(28,56),(29,55),(30,54),(31,53),(32,52),(41,43),(44,48),(45,47)]])
Matrix representation of C8⋊3D8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 3 | 14 |
0 | 0 | 1 | 16 | 3 | 3 |
0 | 0 | 3 | 14 | 1 | 1 |
0 | 0 | 3 | 3 | 16 | 1 |
3 | 14 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,1,3,3,0,0,16,16,14,3,0,0,3,3,1,16,0,0,14,3,1,1],[3,3,0,0,0,0,14,3,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16] >;
C8⋊3D8 in GAP, Magma, Sage, TeX
C_8\rtimes_3D_8
% in TeX
G:=Group("C8:3D8");
// GroupNames label
G:=SmallGroup(128,453);
// by ID
G=gap.SmallGroup(128,453);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,64,422,387,436,1123,136,2804,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export