Extensions 1→N→G→Q→1 with N=C2 and Q=C83D4

Direct product G=N×Q with N=C2 and Q=C83D4
dρLabelID
C2×C83D464C2xC8:3D4128,1880


Non-split extensions G=N.Q with N=C2 and Q=C83D4
extensionφ:Q→Aut NdρLabelID
C2.1(C83D4) = C42.26Q8central extension (φ=1)128C2.1(C8:3D4)128,579
C2.2(C83D4) = C42.110D4central extension (φ=1)64C2.2(C8:3D4)128,691
C2.3(C83D4) = C42.112D4central extension (φ=1)64C2.3(C8:3D4)128,693
C2.4(C83D4) = (C2×D8)⋊10C4central extension (φ=1)64C2.4(C8:3D4)128,704
C2.5(C83D4) = C8⋊(C22⋊C4)central extension (φ=1)64C2.5(C8:3D4)128,705
C2.6(C83D4) = C85SD16central stem extension (φ=1)64C2.6(C8:3D4)128,446
C2.7(C83D4) = C86SD16central stem extension (φ=1)64C2.7(C8:3D4)128,447
C2.8(C83D4) = C42.664C23central stem extension (φ=1)64C2.8(C8:3D4)128,449
C2.9(C83D4) = C42.666C23central stem extension (φ=1)64C2.9(C8:3D4)128,451
C2.10(C83D4) = C42.667C23central stem extension (φ=1)64C2.10(C8:3D4)128,452
C2.11(C83D4) = C83D8central stem extension (φ=1)64C2.11(C8:3D4)128,453
C2.12(C83D4) = C83Q16central stem extension (φ=1)128C2.12(C8:3D4)128,455
C2.13(C83D4) = (C2×C4)⋊2D8central stem extension (φ=1)64C2.13(C8:3D4)128,743
C2.14(C83D4) = (C22×D8).C2central stem extension (φ=1)64C2.14(C8:3D4)128,744
C2.15(C83D4) = (C2×C8)⋊20D4central stem extension (φ=1)64C2.15(C8:3D4)128,746
C2.16(C83D4) = (C2×C8).168D4central stem extension (φ=1)64C2.16(C8:3D4)128,824
C2.17(C83D4) = (C2×C8).169D4central stem extension (φ=1)64C2.17(C8:3D4)128,826
C2.18(C83D4) = (C2×C8).60D4central stem extension (φ=1)128C2.18(C8:3D4)128,827

׿
×
𝔽