p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊3Q16, C42.670C23, (C2×C8).39D4, C4.4(C2×Q16), C8⋊C8.6C2, C8⋊3Q8.2C2, C4.7(C8⋊C22), C4⋊Q16.7C2, C8⋊2Q8.10C2, C4⋊Q8.94C22, C2.12(C8⋊3D4), (C4×C8).156C22, C2.7(C4⋊Q16), C4.7(C8.C22), C4.SD16.7C2, C2.12(C8.2D4), C22.71(C4⋊1D4), (C2×C4).727(C2×D4), SmallGroup(128,455)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊3Q16
G = < a,b,c | a8=b8=1, c2=b4, bab-1=a5, cac-1=a3, cbc-1=b-1 >
Subgroups: 192 in 88 conjugacy classes, 40 normal (24 characteristic)
C1, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, C42, C4⋊C4, C2×C8, Q16, C2×Q8, C4×C8, Q8⋊C4, C4.Q8, C2.D8, C4⋊Q8, C2×Q16, C8⋊C8, C4.SD16, C4⋊Q16, C8⋊3Q8, C8⋊2Q8, C8⋊3Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4⋊1D4, C2×Q16, C8⋊C22, C8.C22, C4⋊Q16, C8⋊3D4, C8.2D4, C8⋊3Q16
Character table of C8⋊3Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 16 | 16 | 16 | 16 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 2 | -√2 | -√2 | 0 | √2 | √2 | 0 | -2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -2 | √2 | -√2 | 0 | -√2 | √2 | 0 | 2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | 0 | √2 | √2 | -2 | √2 | -√2 | 2 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | -√2 | 0 | √2 | -√2 | 2 | √2 | √2 | -2 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -2 | -√2 | √2 | 0 | √2 | -√2 | 0 | 2 | symplectic lifted from Q16, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 2 | √2 | √2 | 0 | -√2 | -√2 | 0 | -2 | symplectic lifted from Q16, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | √2 | 0 | -√2 | √2 | 2 | -√2 | -√2 | -2 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ22 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | 0 | -√2 | -√2 | -2 | -√2 | √2 | 2 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ25 | 4 | -4 | -4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ26 | 4 | -4 | -4 | 4 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 63 18 67 74 25 54 98)(2 60 19 72 75 30 55 103)(3 57 20 69 76 27 56 100)(4 62 21 66 77 32 49 97)(5 59 22 71 78 29 50 102)(6 64 23 68 79 26 51 99)(7 61 24 65 80 31 52 104)(8 58 17 70 73 28 53 101)(9 106 119 35 42 91 84 125)(10 111 120 40 43 96 85 122)(11 108 113 37 44 93 86 127)(12 105 114 34 45 90 87 124)(13 110 115 39 46 95 88 121)(14 107 116 36 47 92 81 126)(15 112 117 33 48 89 82 123)(16 109 118 38 41 94 83 128)
(1 37 74 127)(2 40 75 122)(3 35 76 125)(4 38 77 128)(5 33 78 123)(6 36 79 126)(7 39 80 121)(8 34 73 124)(9 100 42 69)(10 103 43 72)(11 98 44 67)(12 101 45 70)(13 104 46 65)(14 99 47 68)(15 102 48 71)(16 97 41 66)(17 105 53 90)(18 108 54 93)(19 111 55 96)(20 106 56 91)(21 109 49 94)(22 112 50 89)(23 107 51 92)(24 110 52 95)(25 86 63 113)(26 81 64 116)(27 84 57 119)(28 87 58 114)(29 82 59 117)(30 85 60 120)(31 88 61 115)(32 83 62 118)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,63,18,67,74,25,54,98)(2,60,19,72,75,30,55,103)(3,57,20,69,76,27,56,100)(4,62,21,66,77,32,49,97)(5,59,22,71,78,29,50,102)(6,64,23,68,79,26,51,99)(7,61,24,65,80,31,52,104)(8,58,17,70,73,28,53,101)(9,106,119,35,42,91,84,125)(10,111,120,40,43,96,85,122)(11,108,113,37,44,93,86,127)(12,105,114,34,45,90,87,124)(13,110,115,39,46,95,88,121)(14,107,116,36,47,92,81,126)(15,112,117,33,48,89,82,123)(16,109,118,38,41,94,83,128), (1,37,74,127)(2,40,75,122)(3,35,76,125)(4,38,77,128)(5,33,78,123)(6,36,79,126)(7,39,80,121)(8,34,73,124)(9,100,42,69)(10,103,43,72)(11,98,44,67)(12,101,45,70)(13,104,46,65)(14,99,47,68)(15,102,48,71)(16,97,41,66)(17,105,53,90)(18,108,54,93)(19,111,55,96)(20,106,56,91)(21,109,49,94)(22,112,50,89)(23,107,51,92)(24,110,52,95)(25,86,63,113)(26,81,64,116)(27,84,57,119)(28,87,58,114)(29,82,59,117)(30,85,60,120)(31,88,61,115)(32,83,62,118)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,63,18,67,74,25,54,98)(2,60,19,72,75,30,55,103)(3,57,20,69,76,27,56,100)(4,62,21,66,77,32,49,97)(5,59,22,71,78,29,50,102)(6,64,23,68,79,26,51,99)(7,61,24,65,80,31,52,104)(8,58,17,70,73,28,53,101)(9,106,119,35,42,91,84,125)(10,111,120,40,43,96,85,122)(11,108,113,37,44,93,86,127)(12,105,114,34,45,90,87,124)(13,110,115,39,46,95,88,121)(14,107,116,36,47,92,81,126)(15,112,117,33,48,89,82,123)(16,109,118,38,41,94,83,128), (1,37,74,127)(2,40,75,122)(3,35,76,125)(4,38,77,128)(5,33,78,123)(6,36,79,126)(7,39,80,121)(8,34,73,124)(9,100,42,69)(10,103,43,72)(11,98,44,67)(12,101,45,70)(13,104,46,65)(14,99,47,68)(15,102,48,71)(16,97,41,66)(17,105,53,90)(18,108,54,93)(19,111,55,96)(20,106,56,91)(21,109,49,94)(22,112,50,89)(23,107,51,92)(24,110,52,95)(25,86,63,113)(26,81,64,116)(27,84,57,119)(28,87,58,114)(29,82,59,117)(30,85,60,120)(31,88,61,115)(32,83,62,118) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,63,18,67,74,25,54,98),(2,60,19,72,75,30,55,103),(3,57,20,69,76,27,56,100),(4,62,21,66,77,32,49,97),(5,59,22,71,78,29,50,102),(6,64,23,68,79,26,51,99),(7,61,24,65,80,31,52,104),(8,58,17,70,73,28,53,101),(9,106,119,35,42,91,84,125),(10,111,120,40,43,96,85,122),(11,108,113,37,44,93,86,127),(12,105,114,34,45,90,87,124),(13,110,115,39,46,95,88,121),(14,107,116,36,47,92,81,126),(15,112,117,33,48,89,82,123),(16,109,118,38,41,94,83,128)], [(1,37,74,127),(2,40,75,122),(3,35,76,125),(4,38,77,128),(5,33,78,123),(6,36,79,126),(7,39,80,121),(8,34,73,124),(9,100,42,69),(10,103,43,72),(11,98,44,67),(12,101,45,70),(13,104,46,65),(14,99,47,68),(15,102,48,71),(16,97,41,66),(17,105,53,90),(18,108,54,93),(19,111,55,96),(20,106,56,91),(21,109,49,94),(22,112,50,89),(23,107,51,92),(24,110,52,95),(25,86,63,113),(26,81,64,116),(27,84,57,119),(28,87,58,114),(29,82,59,117),(30,85,60,120),(31,88,61,115),(32,83,62,118)]])
Matrix representation of C8⋊3Q16 ►in GL6(𝔽17)
0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 9 | 4 | 14 |
0 | 0 | 8 | 6 | 1 | 12 |
0 | 0 | 5 | 1 | 2 | 1 |
0 | 0 | 3 | 15 | 8 | 3 |
14 | 3 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 3 | 1 | 0 |
0 | 0 | 14 | 14 | 1 | 15 |
0 | 0 | 0 | 0 | 0 | 6 |
0 | 0 | 0 | 0 | 14 | 6 |
1 | 7 | 0 | 0 | 0 | 0 |
7 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 10 | 10 | 0 |
0 | 0 | 10 | 16 | 7 | 3 |
0 | 0 | 0 | 0 | 9 | 14 |
0 | 0 | 0 | 0 | 16 | 8 |
G:=sub<GL(6,GF(17))| [0,16,0,0,0,0,1,0,0,0,0,0,0,0,6,8,5,3,0,0,9,6,1,15,0,0,4,1,2,8,0,0,14,12,1,3],[14,14,0,0,0,0,3,14,0,0,0,0,0,0,14,14,0,0,0,0,3,14,0,0,0,0,1,1,0,14,0,0,0,15,6,6],[1,7,0,0,0,0,7,16,0,0,0,0,0,0,1,10,0,0,0,0,10,16,0,0,0,0,10,7,9,16,0,0,0,3,14,8] >;
C8⋊3Q16 in GAP, Magma, Sage, TeX
C_8\rtimes_3Q_{16}
% in TeX
G:=Group("C8:3Q16");
// GroupNames label
G:=SmallGroup(128,455);
// by ID
G=gap.SmallGroup(128,455);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,64,422,387,436,1123,136,2804,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=1,c^2=b^4,b*a*b^-1=a^5,c*a*c^-1=a^3,c*b*c^-1=b^-1>;
// generators/relations
Export