Extensions 1→N→G→Q→1 with N=C2 and Q=C8.2D4

Direct product G=N×Q with N=C2 and Q=C8.2D4
dρLabelID
C2×C8.2D464C2xC8.2D4128,1881


Non-split extensions G=N.Q with N=C2 and Q=C8.2D4
extensionφ:Q→Aut NdρLabelID
C2.1(C8.2D4) = C42.26Q8central extension (φ=1)128C2.1(C8.2D4)128,579
C2.2(C8.2D4) = C42.110D4central extension (φ=1)64C2.2(C8.2D4)128,691
C2.3(C8.2D4) = C42.111D4central extension (φ=1)128C2.3(C8.2D4)128,692
C2.4(C8.2D4) = (C2×Q16)⋊10C4central extension (φ=1)128C2.4(C8.2D4)128,703
C2.5(C8.2D4) = C8⋊(C22⋊C4)central extension (φ=1)64C2.5(C8.2D4)128,705
C2.6(C8.2D4) = C85SD16central stem extension (φ=1)64C2.6(C8.2D4)128,446
C2.7(C8.2D4) = C8.9SD16central stem extension (φ=1)128C2.7(C8.2D4)128,448
C2.8(C8.2D4) = C42.665C23central stem extension (φ=1)128C2.8(C8.2D4)128,450
C2.9(C8.2D4) = C42.666C23central stem extension (φ=1)64C2.9(C8.2D4)128,451
C2.10(C8.2D4) = C42.667C23central stem extension (φ=1)64C2.10(C8.2D4)128,452
C2.11(C8.2D4) = C8.2D8central stem extension (φ=1)64C2.11(C8.2D4)128,454
C2.12(C8.2D4) = C83Q16central stem extension (φ=1)128C2.12(C8.2D4)128,455
C2.13(C8.2D4) = (C2×C4)⋊3SD16central stem extension (φ=1)64C2.13(C8.2D4)128,745
C2.14(C8.2D4) = (C2×C8).41D4central stem extension (φ=1)64C2.14(C8.2D4)128,747
C2.15(C8.2D4) = (C2×C4)⋊2Q16central stem extension (φ=1)128C2.15(C8.2D4)128,748
C2.16(C8.2D4) = (C2×C4).27D8central stem extension (φ=1)64C2.16(C8.2D4)128,825
C2.17(C8.2D4) = (C2×C8).170D4central stem extension (φ=1)128C2.17(C8.2D4)128,828
C2.18(C8.2D4) = (C2×C8).171D4central stem extension (φ=1)128C2.18(C8.2D4)128,829

׿
×
𝔽