Copied to
clipboard

G = C8.9SD16order 128 = 27

9th non-split extension by C8 of SD16 acting via SD16/C4=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C8.9SD16, C42.663C23, C8⋊C8.4C2, (C2×C8).152D4, C83Q8.7C2, C4.7(C2×SD16), C4⋊Q8.87C22, C2.11(C85D4), (C4×C8).153C22, C4⋊Q16.14C2, C2.7(C8.2D4), C4.2(C8.C22), C4.SD16.12C2, C22.64(C41D4), (C2×C4).720(C2×D4), SmallGroup(128,448)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C8.9SD16
C1C2C22C2×C4C42C4×C8C8⋊C8 — C8.9SD16
C1C22C42 — C8.9SD16
C1C22C42 — C8.9SD16
C1C22C22C42 — C8.9SD16

Generators and relations for C8.9SD16
 G = < a,b,c | a8=b8=1, c2=a4, bab-1=a5, cac-1=a-1, cbc-1=b3 >

Subgroups: 192 in 88 conjugacy classes, 40 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, C2×C4, Q8, C42, C4⋊C4, C2×C8, Q16, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4.Q8, C4⋊Q8, C4⋊Q8, C2×Q16, C8⋊C8, C4.SD16, C4⋊Q16, C83Q8, C83Q8, C8.9SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C41D4, C2×SD16, C8.C22, C85D4, C8.2D4, C8.9SD16

Character table of C8.9SD16

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J8A8B8C8D8E8F8G8H8I8J8K8L
 size 111122222216161616444444444444
ρ111111111111111111111111111    trivial
ρ211111111111-11-1-1-1-1-11-1-11-1-111    linear of order 2
ρ31111111111-1-11111-1-1-11-1-11-1-1-1    linear of order 2
ρ41111111111-111-1-1-111-1-11-1-11-1-1    linear of order 2
ρ51111111111-1-1-1-1111111111111    linear of order 2
ρ61111111111-11-11-1-1-1-11-1-11-1-111    linear of order 2
ρ7111111111111-1-111-1-1-11-1-11-1-1-1    linear of order 2
ρ811111111111-1-11-1-111-1-11-1-11-1-1    linear of order 2
ρ92222-22-2-22-200000000200-200-22    orthogonal lifted from D4
ρ1022222-22-2-2-200002-2000-2002000    orthogonal lifted from D4
ρ112222-2-2-22-22000000-2-200200200    orthogonal lifted from D4
ρ122222-2-2-22-220000002200-200-200    orthogonal lifted from D4
ρ132222-22-2-22-200000000-2002002-2    orthogonal lifted from D4
ρ1422222-22-2-2-20000-22000200-2000    orthogonal lifted from D4
ρ152-22-20-200200000-2-2-2--20--2--2-2--2-220    complex lifted from SD16
ρ162-22-20200-200000--2-2--2-22--2--20-2-20-2    complex lifted from SD16
ρ172-22-20200-200000--2-2-2--2-2--2-20-2--202    complex lifted from SD16
ρ182-22-20-200200000--2--2-2--20-2--22-2-2-20    complex lifted from SD16
ρ192-22-20200-200000-2--2-2--22-2-20--2--20-2    complex lifted from SD16
ρ202-22-20-200200000--2--2--2-20-2-2-2-2--220    complex lifted from SD16
ρ212-22-20-200200000-2-2--2-20--2-22--2--2-20    complex lifted from SD16
ρ222-22-20200-200000-2--2--2-2-2-2--20--2-202    complex lifted from SD16
ρ234-4-4440-40000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2444-4-4000-4040000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ254-4-44-4040000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2644-4-400040-40000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of C8.9SD16
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 59 22 71 78 29 54 98)(2 64 23 68 79 26 55 103)(3 61 24 65 80 31 56 100)(4 58 17 70 73 28 49 97)(5 63 18 67 74 25 50 102)(6 60 19 72 75 30 51 99)(7 57 20 69 76 27 52 104)(8 62 21 66 77 32 53 101)(9 110 84 125 44 91 115 37)(10 107 85 122 45 96 116 34)(11 112 86 127 46 93 117 39)(12 109 87 124 47 90 118 36)(13 106 88 121 48 95 119 33)(14 111 81 126 41 92 120 38)(15 108 82 123 42 89 113 35)(16 105 83 128 43 94 114 40)
(1 127 5 123)(2 126 6 122)(3 125 7 121)(4 124 8 128)(9 104 13 100)(10 103 14 99)(11 102 15 98)(12 101 16 97)(17 109 21 105)(18 108 22 112)(19 107 23 111)(20 106 24 110)(25 82 29 86)(26 81 30 85)(27 88 31 84)(28 87 32 83)(33 80 37 76)(34 79 38 75)(35 78 39 74)(36 77 40 73)(41 72 45 68)(42 71 46 67)(43 70 47 66)(44 69 48 65)(49 90 53 94)(50 89 54 93)(51 96 55 92)(52 95 56 91)(57 119 61 115)(58 118 62 114)(59 117 63 113)(60 116 64 120)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,59,22,71,78,29,54,98)(2,64,23,68,79,26,55,103)(3,61,24,65,80,31,56,100)(4,58,17,70,73,28,49,97)(5,63,18,67,74,25,50,102)(6,60,19,72,75,30,51,99)(7,57,20,69,76,27,52,104)(8,62,21,66,77,32,53,101)(9,110,84,125,44,91,115,37)(10,107,85,122,45,96,116,34)(11,112,86,127,46,93,117,39)(12,109,87,124,47,90,118,36)(13,106,88,121,48,95,119,33)(14,111,81,126,41,92,120,38)(15,108,82,123,42,89,113,35)(16,105,83,128,43,94,114,40), (1,127,5,123)(2,126,6,122)(3,125,7,121)(4,124,8,128)(9,104,13,100)(10,103,14,99)(11,102,15,98)(12,101,16,97)(17,109,21,105)(18,108,22,112)(19,107,23,111)(20,106,24,110)(25,82,29,86)(26,81,30,85)(27,88,31,84)(28,87,32,83)(33,80,37,76)(34,79,38,75)(35,78,39,74)(36,77,40,73)(41,72,45,68)(42,71,46,67)(43,70,47,66)(44,69,48,65)(49,90,53,94)(50,89,54,93)(51,96,55,92)(52,95,56,91)(57,119,61,115)(58,118,62,114)(59,117,63,113)(60,116,64,120)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,59,22,71,78,29,54,98)(2,64,23,68,79,26,55,103)(3,61,24,65,80,31,56,100)(4,58,17,70,73,28,49,97)(5,63,18,67,74,25,50,102)(6,60,19,72,75,30,51,99)(7,57,20,69,76,27,52,104)(8,62,21,66,77,32,53,101)(9,110,84,125,44,91,115,37)(10,107,85,122,45,96,116,34)(11,112,86,127,46,93,117,39)(12,109,87,124,47,90,118,36)(13,106,88,121,48,95,119,33)(14,111,81,126,41,92,120,38)(15,108,82,123,42,89,113,35)(16,105,83,128,43,94,114,40), (1,127,5,123)(2,126,6,122)(3,125,7,121)(4,124,8,128)(9,104,13,100)(10,103,14,99)(11,102,15,98)(12,101,16,97)(17,109,21,105)(18,108,22,112)(19,107,23,111)(20,106,24,110)(25,82,29,86)(26,81,30,85)(27,88,31,84)(28,87,32,83)(33,80,37,76)(34,79,38,75)(35,78,39,74)(36,77,40,73)(41,72,45,68)(42,71,46,67)(43,70,47,66)(44,69,48,65)(49,90,53,94)(50,89,54,93)(51,96,55,92)(52,95,56,91)(57,119,61,115)(58,118,62,114)(59,117,63,113)(60,116,64,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,59,22,71,78,29,54,98),(2,64,23,68,79,26,55,103),(3,61,24,65,80,31,56,100),(4,58,17,70,73,28,49,97),(5,63,18,67,74,25,50,102),(6,60,19,72,75,30,51,99),(7,57,20,69,76,27,52,104),(8,62,21,66,77,32,53,101),(9,110,84,125,44,91,115,37),(10,107,85,122,45,96,116,34),(11,112,86,127,46,93,117,39),(12,109,87,124,47,90,118,36),(13,106,88,121,48,95,119,33),(14,111,81,126,41,92,120,38),(15,108,82,123,42,89,113,35),(16,105,83,128,43,94,114,40)], [(1,127,5,123),(2,126,6,122),(3,125,7,121),(4,124,8,128),(9,104,13,100),(10,103,14,99),(11,102,15,98),(12,101,16,97),(17,109,21,105),(18,108,22,112),(19,107,23,111),(20,106,24,110),(25,82,29,86),(26,81,30,85),(27,88,31,84),(28,87,32,83),(33,80,37,76),(34,79,38,75),(35,78,39,74),(36,77,40,73),(41,72,45,68),(42,71,46,67),(43,70,47,66),(44,69,48,65),(49,90,53,94),(50,89,54,93),(51,96,55,92),(52,95,56,91),(57,119,61,115),(58,118,62,114),(59,117,63,113),(60,116,64,120)]])

Matrix representation of C8.9SD16 in GL6(𝔽17)

100000
010000
00210117
00108313
0071383
001341416
,
200000
180000
000010
0016161616
0016000
002201
,
310000
9140000
007010
0011111
0010100
001514126

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,10,7,13,0,0,10,8,13,4,0,0,11,3,8,14,0,0,7,13,3,16],[2,1,0,0,0,0,0,8,0,0,0,0,0,0,0,16,16,2,0,0,0,16,0,2,0,0,1,16,0,0,0,0,0,16,0,1],[3,9,0,0,0,0,1,14,0,0,0,0,0,0,7,1,1,15,0,0,0,11,0,14,0,0,1,1,10,12,0,0,0,1,0,6] >;

C8.9SD16 in GAP, Magma, Sage, TeX

C_8._9{\rm SD}_{16}
% in TeX

G:=Group("C8.9SD16");
// GroupNames label

G:=SmallGroup(128,448);
// by ID

G=gap.SmallGroup(128,448);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,288,422,387,100,1123,136,2804,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=1,c^2=a^4,b*a*b^-1=a^5,c*a*c^-1=a^-1,c*b*c^-1=b^3>;
// generators/relations

Export

Character table of C8.9SD16 in TeX

׿
×
𝔽