Extensions 1→N→G→Q→1 with N=C2×C4.4D4 and Q=C2

Direct product G=N×Q with N=C2×C4.4D4 and Q=C2
dρLabelID
C22×C4.4D464C2^2xC4.4D4128,2168

Semidirect products G=N:Q with N=C2×C4.4D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C4.4D4)⋊1C2 = C42.129D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):1C2128,735
(C2×C4.4D4)⋊2C2 = C4210D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):2C2128,736
(C2×C4.4D4)⋊3C2 = (C22×D8).C2φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):3C2128,744
(C2×C4.4D4)⋊4C2 = C24.259C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):4C2128,1158
(C2×C4.4D4)⋊5C2 = C23.327C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):5C2128,1159
(C2×C4.4D4)⋊6C2 = C24.263C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):6C2128,1163
(C2×C4.4D4)⋊7C2 = C24.264C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):7C2128,1164
(C2×C4.4D4)⋊8C2 = C23.335C24φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):8C2128,1167
(C2×C4.4D4)⋊9C2 = C24.565C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):9C2128,1168
(C2×C4.4D4)⋊10C2 = C23.359C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):10C2128,1191
(C2×C4.4D4)⋊11C2 = C24.282C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):11C2128,1193
(C2×C4.4D4)⋊12C2 = C23.372C24φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):12C2128,1204
(C2×C4.4D4)⋊13C2 = C23.391C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):13C2128,1223
(C2×C4.4D4)⋊14C2 = C4219D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):14C2128,1272
(C2×C4.4D4)⋊15C2 = C4221D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):15C2128,1276
(C2×C4.4D4)⋊16C2 = C42.171D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):16C2128,1280
(C2×C4.4D4)⋊17C2 = C23.455C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):17C2128,1287
(C2×C4.4D4)⋊18C2 = C23.457C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):18C2128,1289
(C2×C4.4D4)⋊19C2 = C4226D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):19C2128,1342
(C2×C4.4D4)⋊20C2 = C4228D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):20C2128,1352
(C2×C4.4D4)⋊21C2 = C4229D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):21C2128,1363
(C2×C4.4D4)⋊22C2 = C4231D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):22C2128,1389
(C2×C4.4D4)⋊23C2 = C4232D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):23C2128,1394
(C2×C4.4D4)⋊24C2 = C23.570C24φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):24C2128,1402
(C2×C4.4D4)⋊25C2 = C23.572C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):25C2128,1404
(C2×C4.4D4)⋊26C2 = C23.576C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):26C2128,1408
(C2×C4.4D4)⋊27C2 = C23.584C24φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):27C2128,1416
(C2×C4.4D4)⋊28C2 = C24.393C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):28C2128,1418
(C2×C4.4D4)⋊29C2 = C24.412C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):29C2128,1442
(C2×C4.4D4)⋊30C2 = C23.612C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):30C2128,1444
(C2×C4.4D4)⋊31C2 = C23.630C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):31C2128,1462
(C2×C4.4D4)⋊32C2 = C23.633C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):32C2128,1465
(C2×C4.4D4)⋊33C2 = C4234D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):33C2128,1551
(C2×C4.4D4)⋊34C2 = C4246D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):34C2128,1582
(C2×C4.4D4)⋊35C2 = C4312C2φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):35C2128,1590
(C2×C4.4D4)⋊36C2 = C2×D4.9D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):36C2128,1747
(C2×C4.4D4)⋊37C2 = C2×D4.8D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):37C2128,1748
(C2×C4.4D4)⋊38C2 = C2×D4.2D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):38C2128,1763
(C2×C4.4D4)⋊39C2 = C42.446D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):39C2128,1772
(C2×C4.4D4)⋊40C2 = C2×C8.12D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):40C2128,1878
(C2×C4.4D4)⋊41C2 = C2×C83D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):41C2128,1880
(C2×C4.4D4)⋊42C2 = M4(2)⋊9D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):42C2128,1885
(C2×C4.4D4)⋊43C2 = C42.269D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):43C2128,1943
(C2×C4.4D4)⋊44C2 = C42.271D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):44C2128,1945
(C2×C4.4D4)⋊45C2 = C2×C22.29C24φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):45C2128,2178
(C2×C4.4D4)⋊46C2 = C2×C23.38C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):46C2128,2179
(C2×C4.4D4)⋊47C2 = C2×C22.32C24φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):47C2128,2182
(C2×C4.4D4)⋊48C2 = C2×C22.36C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):48C2128,2186
(C2×C4.4D4)⋊49C2 = C2×D45D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):49C2128,2195
(C2×C4.4D4)⋊50C2 = C2×Q85D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):50C2128,2197
(C2×C4.4D4)⋊51C2 = C2×C22.45C24φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):51C2128,2201
(C2×C4.4D4)⋊52C2 = C2×C22.49C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):52C2128,2205
(C2×C4.4D4)⋊53C2 = C2×C22.53C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):53C2128,2211
(C2×C4.4D4)⋊54C2 = C22.89C25φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):54C2128,2232
(C2×C4.4D4)⋊55C2 = C22.99C25φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):55C2128,2242
(C2×C4.4D4)⋊56C2 = C22.103C25φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):56C2128,2246
(C2×C4.4D4)⋊57C2 = C2×C24⋊C22φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):57C2128,2258
(C2×C4.4D4)⋊58C2 = C2×C22.56C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4):58C2128,2259
(C2×C4.4D4)⋊59C2 = C22.134C25φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):59C2128,2277
(C2×C4.4D4)⋊60C2 = C22.147C25φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):60C2128,2290
(C2×C4.4D4)⋊61C2 = C22.150C25φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4):61C2128,2293
(C2×C4.4D4)⋊62C2 = C2×C23.36C23φ: trivial image64(C2xC4.4D4):62C2128,2171
(C2×C4.4D4)⋊63C2 = C2×C22.26C24φ: trivial image64(C2xC4.4D4):63C2128,2174

Non-split extensions G=N.Q with N=C2×C4.4D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C4.4D4).1C2 = C42.395D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4).1C2128,201
(C2×C4.4D4).2C2 = C2×C42.C22φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).2C2128,254
(C2×C4.4D4).3C2 = C42.407D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4).3C2128,259
(C2×C4.4D4).4C2 = C42.70D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4).4C2128,265
(C2×C4.4D4).5C2 = C24.23D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4).5C2128,617
(C2×C4.4D4).6C2 = C4.4D413C4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4).6C2128,620
(C2×C4.4D4).7C2 = C42.433D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).7C2128,690
(C2×C4.4D4).8C2 = C42.110D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).8C2128,691
(C2×C4.4D4).9C2 = C42.115D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4).9C2128,699
(C2×C4.4D4).10C2 = C42.119D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).10C2128,715
(C2×C4.4D4).11C2 = (C2×C8).41D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).11C2128,747
(C2×C4.4D4).12C2 = C4⋊C4.94D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).12C2128,774
(C2×C4.4D4).13C2 = C2×C423C4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4).13C2128,857
(C2×C4.4D4).14C2 = C2×C42.C4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4).14C2128,862
(C2×C4.4D4).15C2 = C42.160D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).15C2128,1058
(C2×C4.4D4).16C2 = C24.205C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).16C2128,1069
(C2×C4.4D4).17C2 = C24.220C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).17C2128,1099
(C2×C4.4D4).18C2 = C24.221C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).18C2128,1104
(C2×C4.4D4).19C2 = C23.261C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).19C2128,1111
(C2×C4.4D4).20C2 = C24.271C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).20C2128,1179
(C2×C4.4D4).21C2 = C23.348C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).21C2128,1180
(C2×C4.4D4).22C2 = C23.374C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).22C2128,1206
(C2×C4.4D4).23C2 = C24.311C23φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).23C2128,1253
(C2×C4.4D4).24C2 = C42.168D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).24C2128,1277
(C2×C4.4D4).25C2 = C42.170D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).25C2128,1279
(C2×C4.4D4).26C2 = C42.182D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).26C2128,1324
(C2×C4.4D4).27C2 = C42.189D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).27C2128,1364
(C2×C4.4D4).28C2 = C42.193D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).28C2128,1372
(C2×C4.4D4).29C2 = C42.196D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).29C2128,1390
(C2×C4.4D4).30C2 = C23.574C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).30C2128,1406
(C2×C4.4D4).31C2 = C23.600C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).31C2128,1432
(C2×C4.4D4).32C2 = C23.615C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).32C2128,1447
(C2×C4.4D4).33C2 = C23.617C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).33C2128,1449
(C2×C4.4D4).34C2 = C23.631C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).34C2128,1463
(C2×C4.4D4).35C2 = C42.199D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).35C2128,1552
(C2×C4.4D4).36C2 = C4314C2φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).36C2128,1593
(C2×C4.4D4).37C2 = C2×Q8.D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).37C2128,1766
(C2×C4.4D4).38C2 = C2×C42.78C22φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).38C2128,1862
(C2×C4.4D4).39C2 = C2×C42.28C22φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).39C2128,1864
(C2×C4.4D4).40C2 = C42.242D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4).40C2128,1872
(C2×C4.4D4).41C2 = C2×C8.2D4φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).41C2128,1881
(C2×C4.4D4).42C2 = C42.273D4φ: C2/C1C2 ⊆ Out C2×C4.4D432(C2xC4.4D4).42C2128,1947
(C2×C4.4D4).43C2 = C2×C22.50C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).43C2128,2206
(C2×C4.4D4).44C2 = C2×C22.57C24φ: C2/C1C2 ⊆ Out C2×C4.4D464(C2xC4.4D4).44C2128,2260
(C2×C4.4D4).45C2 = C4×C4.4D4φ: trivial image64(C2xC4.4D4).45C2128,1035

׿
×
𝔽