Copied to
clipboard

G = C2xD4.8D4order 128 = 27

Direct product of C2 and D4.8D4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xD4.8D4, C42.311C23, M4(2).1C23, 2- 1+4:5C22, C4wrC2:9C22, C4oD4.16D4, D4.50(C2xD4), (C2xC4).8C24, Q8.50(C2xD4), C4.45C22wrC2, (C2xD4).298D4, C8:C22:5C22, (C2xQ8).233D4, C4oD4.3C23, C4.53(C22xD4), (C2xD4).34C23, C23.650(C2xD4), (C22xC4).108D4, (C2xQ8).25C23, C4.10D4:6C22, C4.4D4:50C22, (C2x2- 1+4):3C2, C22.32(C22xD4), C22.120C22wrC2, (C22xC4).967C23, (C2xC42).800C22, (C22xD4).330C22, (C2xM4(2)).44C22, (C22xQ8).264C22, (C2xC4wrC2):6C2, (C2xC4).23(C2xD4), (C2xC8:C22):12C2, C2.53(C2xC22wrC2), (C2xC4.4D4):37C2, (C2xC4.10D4):7C2, (C2xC4oD4).106C22, SmallGroup(128,1748)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C2xD4.8D4
C1C2C22C2xC4C22xC4C22xQ8C2x2- 1+4 — C2xD4.8D4
C1C2C2xC4 — C2xD4.8D4
C1C22C22xC4 — C2xD4.8D4
C1C2C2C2xC4 — C2xD4.8D4

Generators and relations for C2xD4.8D4
 G = < a,b,c,d,e | a2=b4=c2=e2=1, d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=ebe=b-1, dcd-1=bc, ece=b-1c, ede=b2d3 >

Subgroups: 708 in 364 conjugacy classes, 108 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22:C4, C2xC8, M4(2), M4(2), D8, SD16, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, C24, C4.10D4, C4wrC2, C2xC42, C2xC22:C4, C4.4D4, C4.4D4, C2xM4(2), C2xD8, C2xSD16, C8:C22, C8:C22, C22xD4, C22xQ8, C22xQ8, C2xC4oD4, C2xC4oD4, 2- 1+4, 2- 1+4, C2xC4.10D4, C2xC4wrC2, D4.8D4, C2xC4.4D4, C2xC8:C22, C2x2- 1+4, C2xD4.8D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C22wrC2, C22xD4, D4.8D4, C2xC22wrC2, C2xD4.8D4

Smallest permutation representation of C2xD4.8D4
On 32 points
Generators in S32
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 29 5 25)(2 26 6 30)(3 31 7 27)(4 28 8 32)(9 24 13 20)(10 21 14 17)(11 18 15 22)(12 23 16 19)
(1 16)(2 24)(3 10)(4 18)(5 12)(6 20)(7 14)(8 22)(9 26)(11 28)(13 30)(15 32)(17 31)(19 25)(21 27)(23 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 27)(2 26)(3 25)(4 32)(5 31)(6 30)(7 29)(8 28)(9 13)(10 12)(14 16)(17 23)(18 22)(19 21)

G:=sub<Sym(32)| (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,29,5,25)(2,26,6,30)(3,31,7,27)(4,28,8,32)(9,24,13,20)(10,21,14,17)(11,18,15,22)(12,23,16,19), (1,16)(2,24)(3,10)(4,18)(5,12)(6,20)(7,14)(8,22)(9,26)(11,28)(13,30)(15,32)(17,31)(19,25)(21,27)(23,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27)(2,26)(3,25)(4,32)(5,31)(6,30)(7,29)(8,28)(9,13)(10,12)(14,16)(17,23)(18,22)(19,21)>;

G:=Group( (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,29,5,25)(2,26,6,30)(3,31,7,27)(4,28,8,32)(9,24,13,20)(10,21,14,17)(11,18,15,22)(12,23,16,19), (1,16)(2,24)(3,10)(4,18)(5,12)(6,20)(7,14)(8,22)(9,26)(11,28)(13,30)(15,32)(17,31)(19,25)(21,27)(23,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27)(2,26)(3,25)(4,32)(5,31)(6,30)(7,29)(8,28)(9,13)(10,12)(14,16)(17,23)(18,22)(19,21) );

G=PermutationGroup([[(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,29,5,25),(2,26,6,30),(3,31,7,27),(4,28,8,32),(9,24,13,20),(10,21,14,17),(11,18,15,22),(12,23,16,19)], [(1,16),(2,24),(3,10),(4,18),(5,12),(6,20),(7,14),(8,22),(9,26),(11,28),(13,30),(15,32),(17,31),(19,25),(21,27),(23,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,27),(2,26),(3,25),(4,32),(5,31),(6,30),(7,29),(8,28),(9,13),(10,12),(14,16),(17,23),(18,22),(19,21)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E···4P8A8B8C8D
order12222222222244444···48888
size11112244448822224···48888

32 irreducible representations

dim111111122224
type+++++++++++
imageC1C2C2C2C2C2C2D4D4D4D4D4.8D4
kernelC2xD4.8D4C2xC4.10D4C2xC4wrC2D4.8D4C2xC4.4D4C2xC8:C22C2x2- 1+4C22xC4C2xD4C2xQ8C4oD4C2
# reps112812122444

Matrix representation of C2xD4.8D4 in GL6(F17)

1600000
0160000
0016000
0001600
0000160
0000016
,
1600000
0160000
000100
0016000
008801
0089160
,
1150000
0160000
0022013
0000130
000400
00511515
,
1150000
1160000
000010
0099016
000100
00141398
,
100000
1160000
001000
0001600
008801
009810

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,8,8,0,0,1,0,8,9,0,0,0,0,0,16,0,0,0,0,1,0],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,2,0,0,5,0,0,2,0,4,1,0,0,0,13,0,15,0,0,13,0,0,15],[1,1,0,0,0,0,15,16,0,0,0,0,0,0,0,9,0,14,0,0,0,9,1,13,0,0,1,0,0,9,0,0,0,16,0,8],[1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,0,8,9,0,0,0,16,8,8,0,0,0,0,0,1,0,0,0,0,1,0] >;

C2xD4.8D4 in GAP, Magma, Sage, TeX

C_2\times D_4._8D_4
% in TeX

G:=Group("C2xD4.8D4");
// GroupNames label

G:=SmallGroup(128,1748);
// by ID

G=gap.SmallGroup(128,1748);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,352,2804,1411,718,172,2028]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=e^2=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=e*b*e=b^-1,d*c*d^-1=b*c,e*c*e=b^-1*c,e*d*e=b^2*d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<