direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×D4.9D4, C42⋊7C23, C24.43D4, M4(2)⋊2C23, 2+ 1+4.8C22, C4≀C2⋊8C22, C4○D4.15D4, D4.49(C2×D4), (C2×C4).7C24, Q8.49(C2×D4), (C2×Q8)⋊3C23, C4.44C22≀C2, (C2×D4).297D4, (C2×Q8).232D4, C4○D4.2C23, C4.52(C22×D4), C23.20(C2×D4), (C2×C42)⋊37C22, (C2×D4).33C23, C4.D4⋊7C22, C8.C22⋊5C22, C4.4D4⋊49C22, (C2×M4(2))⋊8C22, (C22×Q8)⋊16C22, C22.31(C22×D4), C22.119C22≀C2, (C22×C4).966C23, (C2×2+ 1+4).8C2, (C22×D4).329C22, (C2×C4≀C2)⋊5C2, (C2×C4.D4)⋊8C2, C2.52(C2×C22≀C2), (C2×C4.4D4)⋊36C2, (C2×C4).1096(C2×D4), (C2×C8.C22)⋊11C2, (C2×C4○D4).105C22, SmallGroup(128,1747)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×D4.9D4
G = < a,b,c,d,e | a2=b4=c2=d4=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, dcd-1=b-1c, ece-1=bc, ede-1=b2d-1 >
Subgroups: 804 in 380 conjugacy classes, 108 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C42, C22⋊C4, C2×C8, M4(2), M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C24, C4.D4, C4≀C2, C2×C42, C2×C22⋊C4, C4.4D4, C4.4D4, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C8.C22, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, 2+ 1+4, 2+ 1+4, C2×C4.D4, C2×C4≀C2, D4.9D4, C2×C4.4D4, C2×C8.C22, C2×2+ 1+4, C2×D4.9D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, D4.9D4, C2×C22≀C2, C2×D4.9D4
(1 14)(2 15)(3 16)(4 13)(5 28)(6 25)(7 26)(8 27)(9 18)(10 19)(11 20)(12 17)(21 31)(22 32)(23 29)(24 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 4)(2 3)(6 8)(9 10)(11 12)(13 14)(15 16)(17 20)(18 19)(22 24)(25 27)(30 32)
(1 5 9 32)(2 6 10 29)(3 7 11 30)(4 8 12 31)(13 27 17 21)(14 28 18 22)(15 25 19 23)(16 26 20 24)
(1 30 3 32)(2 29 4 31)(5 9 7 11)(6 12 8 10)(13 21 15 23)(14 24 16 22)(17 27 19 25)(18 26 20 28)
G:=sub<Sym(32)| (1,14)(2,15)(3,16)(4,13)(5,28)(6,25)(7,26)(8,27)(9,18)(10,19)(11,20)(12,17)(21,31)(22,32)(23,29)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(6,8)(9,10)(11,12)(13,14)(15,16)(17,20)(18,19)(22,24)(25,27)(30,32), (1,5,9,32)(2,6,10,29)(3,7,11,30)(4,8,12,31)(13,27,17,21)(14,28,18,22)(15,25,19,23)(16,26,20,24), (1,30,3,32)(2,29,4,31)(5,9,7,11)(6,12,8,10)(13,21,15,23)(14,24,16,22)(17,27,19,25)(18,26,20,28)>;
G:=Group( (1,14)(2,15)(3,16)(4,13)(5,28)(6,25)(7,26)(8,27)(9,18)(10,19)(11,20)(12,17)(21,31)(22,32)(23,29)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(6,8)(9,10)(11,12)(13,14)(15,16)(17,20)(18,19)(22,24)(25,27)(30,32), (1,5,9,32)(2,6,10,29)(3,7,11,30)(4,8,12,31)(13,27,17,21)(14,28,18,22)(15,25,19,23)(16,26,20,24), (1,30,3,32)(2,29,4,31)(5,9,7,11)(6,12,8,10)(13,21,15,23)(14,24,16,22)(17,27,19,25)(18,26,20,28) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,13),(5,28),(6,25),(7,26),(8,27),(9,18),(10,19),(11,20),(12,17),(21,31),(22,32),(23,29),(24,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,4),(2,3),(6,8),(9,10),(11,12),(13,14),(15,16),(17,20),(18,19),(22,24),(25,27),(30,32)], [(1,5,9,32),(2,6,10,29),(3,7,11,30),(4,8,12,31),(13,27,17,21),(14,28,18,22),(15,25,19,23),(16,26,20,24)], [(1,30,3,32),(2,29,4,31),(5,9,7,11),(6,12,8,10),(13,21,15,23),(14,24,16,22),(17,27,19,25),(18,26,20,28)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | 4N | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D4.9D4 |
kernel | C2×D4.9D4 | C2×C4.D4 | C2×C4≀C2 | D4.9D4 | C2×C4.4D4 | C2×C8.C22 | C2×2+ 1+4 | C2×D4 | C2×Q8 | C4○D4 | C24 | C2 |
# reps | 1 | 1 | 2 | 8 | 1 | 2 | 1 | 4 | 2 | 4 | 2 | 4 |
Matrix representation of C2×D4.9D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 16 | 16 | 16 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 15 | 0 |
0 | 0 | 1 | 0 | 1 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 | 16 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 4 | 13 | 4 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 13 |
0 | 0 | 13 | 0 | 13 | 0 |
16 | 13 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 4 | 13 | 4 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 13 | 4 | 0 |
0 | 0 | 0 | 4 | 0 | 4 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,1,16,0,0,0,0,0,16,0,0,15,1,1,16,0,0,0,1,0,0],[16,9,0,0,0,0,0,1,0,0,0,0,0,0,16,1,0,16,0,0,0,0,0,16,0,0,15,1,1,16,0,0,0,16,0,0],[1,0,0,0,0,0,4,16,0,0,0,0,0,0,13,0,4,13,0,0,4,13,0,0,0,0,13,0,0,13,0,0,4,0,13,0],[16,0,0,0,0,0,13,1,0,0,0,0,0,0,13,0,0,0,0,0,4,13,13,4,0,0,13,0,4,0,0,0,4,0,0,4] >;
C2×D4.9D4 in GAP, Magma, Sage, TeX
C_2\times D_4._9D_4
% in TeX
G:=Group("C2xD4.9D4");
// GroupNames label
G:=SmallGroup(128,1747);
// by ID
G=gap.SmallGroup(128,1747);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,2804,1411,718,172,2028]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^4=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c,e*c*e^-1=b*c,e*d*e^-1=b^2*d^-1>;
// generators/relations