Extensions 1→N→G→Q→1 with N=C4 and Q=C4.D4

Direct product G=N×Q with N=C4 and Q=C4.D4
dρLabelID
C4×C4.D432C4xC4.D4128,487

Semidirect products G=N:Q with N=C4 and Q=C4.D4
extensionφ:Q→Aut NdρLabelID
C41(C4.D4) = M4(2)⋊12D4φ: C4.D4/M4(2)C2 ⊆ Aut C432C4:1(C4.D4)128,697
C42(C4.D4) = C42.96D4φ: C4.D4/C2×D4C2 ⊆ Aut C432C4:2(C4.D4)128,532

Non-split extensions G=N.Q with N=C4 and Q=C4.D4
extensionφ:Q→Aut NdρLabelID
C4.1(C4.D4) = C8.30D8φ: C4.D4/M4(2)C2 ⊆ Aut C464C4.1(C4.D4)128,92
C4.2(C4.D4) = C4.D16φ: C4.D4/M4(2)C2 ⊆ Aut C464C4.2(C4.D4)128,93
C4.3(C4.D4) = C8.27D8φ: C4.D4/M4(2)C2 ⊆ Aut C4128C4.3(C4.D4)128,94
C4.4(C4.D4) = C42.395D4φ: C4.D4/M4(2)C2 ⊆ Aut C432C4.4(C4.D4)128,201
C4.5(C4.D4) = C42.407D4φ: C4.D4/M4(2)C2 ⊆ Aut C432C4.5(C4.D4)128,259
C4.6(C4.D4) = C42.413D4φ: C4.D4/M4(2)C2 ⊆ Aut C432C4.6(C4.D4)128,277
C4.7(C4.D4) = C42.415D4φ: C4.D4/M4(2)C2 ⊆ Aut C464C4.7(C4.D4)128,280
C4.8(C4.D4) = M4(2)⋊8Q8φ: C4.D4/M4(2)C2 ⊆ Aut C464C4.8(C4.D4)128,729
C4.9(C4.D4) = C42.25D4φ: C4.D4/C2×D4C2 ⊆ Aut C464C4.9(C4.D4)128,22
C4.10(C4.D4) = C42.27D4φ: C4.D4/C2×D4C2 ⊆ Aut C464C4.10(C4.D4)128,24
C4.11(C4.D4) = C42.30D4φ: C4.D4/C2×D4C2 ⊆ Aut C464C4.11(C4.D4)128,39
C4.12(C4.D4) = C42.32D4φ: C4.D4/C2×D4C2 ⊆ Aut C464C4.12(C4.D4)128,41
C4.13(C4.D4) = C24.C8φ: C4.D4/C2×D4C2 ⊆ Aut C4164C4.13(C4.D4)128,52
C4.14(C4.D4) = C23.1M4(2)φ: C4.D4/C2×D4C2 ⊆ Aut C4324C4.14(C4.D4)128,53
C4.15(C4.D4) = C42.43D4φ: C4.D4/C2×D4C2 ⊆ Aut C432C4.15(C4.D4)128,198
C4.16(C4.D4) = C42.73D4φ: C4.D4/C2×D4C2 ⊆ Aut C464C4.16(C4.D4)128,268
C4.17(C4.D4) = C42.87D4φ: C4.D4/C2×D4C2 ⊆ Aut C464C4.17(C4.D4)128,292
C4.18(C4.D4) = C42.3Q8central extension (φ=1)64C4.18(C4.D4)128,15
C4.19(C4.D4) = C42.388D4central extension (φ=1)64C4.19(C4.D4)128,31
C4.20(C4.D4) = C23⋊C16central extension (φ=1)32C4.20(C4.D4)128,46
C4.21(C4.D4) = C23.M4(2)central extension (φ=1)64C4.21(C4.D4)128,47
C4.22(C4.D4) = C42.393D4central extension (φ=1)32C4.22(C4.D4)128,192
C4.23(C4.D4) = C42.405D4central extension (φ=1)64C4.23(C4.D4)128,257
C4.24(C4.D4) = C42.411D4central extension (φ=1)64C4.24(C4.D4)128,275

׿
×
𝔽