Extensions 1→N→G→Q→1 with N=D4○C16 and Q=C2

Direct product G=N×Q with N=D4○C16 and Q=C2
dρLabelID
C2×D4○C1664C2xD4oC16128,2138

Semidirect products G=N:Q with N=D4○C16 and Q=C2
extensionφ:Q→Out NdρLabelID
D4○C161C2 = D4.3D8φ: C2/C1C2 ⊆ Out D4○C16324+D4oC16:1C2128,953
D4○C162C2 = D4.5D8φ: C2/C1C2 ⊆ Out D4○C16324D4oC16:2C2128,955
D4○C163C2 = D4○D16φ: C2/C1C2 ⊆ Out D4○C16324+D4oC16:3C2128,2147
D4○C164C2 = D4○SD32φ: C2/C1C2 ⊆ Out D4○C16324D4oC16:4C2128,2148
D4○C165C2 = Q8○D16φ: C2/C1C2 ⊆ Out D4○C16644-D4oC16:5C2128,2149
D4○C166C2 = C16○D8φ: C2/C1C2 ⊆ Out D4○C16322D4oC16:6C2128,902
D4○C167C2 = D8.C8φ: C2/C1C2 ⊆ Out D4○C16324D4oC16:7C2128,903
D4○C168C2 = Q8○M5(2)φ: C2/C1C2 ⊆ Out D4○C16324D4oC16:8C2128,2139

Non-split extensions G=N.Q with N=D4○C16 and Q=C2
extensionφ:Q→Out NdρLabelID
D4○C16.1C2 = D4.4D8φ: C2/C1C2 ⊆ Out D4○C16644-D4oC16.1C2128,954
D4○C16.2C2 = D4.C16φ: C2/C1C2 ⊆ Out D4○C16642D4oC16.2C2128,133
D4○C16.3C2 = D4○C32φ: trivial image642D4oC16.3C2128,990

׿
×
𝔽