p-group, metabelian, nilpotent (class 4), monomial
Aliases: D4.5D8, Q8.5D8, C16.24D4, M4(2).36D4, M5(2).28C22, D4oC16:2C2, C4.43(C2xD8), (C2xSD32):2C2, C4oD4.28D4, C8.6(C4oD4), C8.107(C2xD4), D4.4D4.C2, C8.4Q8:7C2, M5(2):C2:8C2, D4.5D4:3C2, C8.17D4:8C2, C8oD4.9C22, C4.98(C4:D4), C2.26(C8:7D4), (C2xC8).240C23, (C2xC16).28C22, (C2xD8).50C22, C22.8(C4oD8), C8.C4.7C22, (C2xQ16).49C22, (C2xC4).45(C2xD4), SmallGroup(128,955)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.5D8
G = < a,b,c,d | a4=b2=1, c8=d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c7 >
Subgroups: 180 in 72 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C16, C16, C2xC8, C2xC8, M4(2), M4(2), D8, SD16, Q16, C2xD4, C2xQ8, C4oD4, C4.D4, C4.10D4, C8.C4, C2xC16, C2xC16, M5(2), M5(2), SD32, C8oD4, C2xD8, C2xQ16, C8:C22, C8.C22, M5(2):C2, C8.17D4, C8.4Q8, D4.4D4, D4.5D4, D4oC16, C2xSD32, D4.5D8
Quotients: C1, C2, C22, D4, C23, D8, C2xD4, C4oD4, C4:D4, C2xD8, C4oD8, C8:7D4, D4.5D8
Character table of D4.5D8
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | 16I | 16J | |
size | 1 | 1 | 2 | 4 | 16 | 2 | 2 | 4 | 16 | 2 | 2 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | -2 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 2 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 2 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | -√-2 | √-2 | √-2 | -√-2 | √2 | complex lifted from C4oD8 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | complex lifted from C4oD4 |
ρ19 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √-2 | -√-2 | -√-2 | √-2 | √2 | complex lifted from C4oD8 |
ρ20 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | √-2 | -√-2 | -√-2 | √-2 | -√2 | complex lifted from C4oD8 |
ρ21 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | complex lifted from C4oD4 |
ρ22 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√-2 | √-2 | √-2 | -√-2 | -√2 | complex lifted from C4oD8 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 2ζ1613+2ζ1611 | 2ζ1615+2ζ169 | 2ζ165+2ζ163 | 2ζ167+2ζ16 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 2ζ165+2ζ163 | 2ζ167+2ζ16 | 2ζ1613+2ζ1611 | 2ζ1615+2ζ169 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 2ζ1615+2ζ169 | 2ζ165+2ζ163 | 2ζ167+2ζ16 | 2ζ1613+2ζ1611 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 2ζ167+2ζ16 | 2ζ1613+2ζ1611 | 2ζ1615+2ζ169 | 2ζ165+2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 13 9 5)(2 14 10 6)(3 15 11 7)(4 16 12 8)(17 21 25 29)(18 22 26 30)(19 23 27 31)(20 24 28 32)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(16 27)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 8 9 16)(2 15 10 7)(3 6 11 14)(4 13 12 5)(17 18 25 26)(19 32 27 24)(20 23 28 31)(21 30 29 22)
G:=sub<Sym(32)| (1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8)(17,21,25,29)(18,22,26,30)(19,23,27,31)(20,24,28,32), (1,28)(2,29)(3,30)(4,31)(5,32)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,8,9,16)(2,15,10,7)(3,6,11,14)(4,13,12,5)(17,18,25,26)(19,32,27,24)(20,23,28,31)(21,30,29,22)>;
G:=Group( (1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8)(17,21,25,29)(18,22,26,30)(19,23,27,31)(20,24,28,32), (1,28)(2,29)(3,30)(4,31)(5,32)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,8,9,16)(2,15,10,7)(3,6,11,14)(4,13,12,5)(17,18,25,26)(19,32,27,24)(20,23,28,31)(21,30,29,22) );
G=PermutationGroup([[(1,13,9,5),(2,14,10,6),(3,15,11,7),(4,16,12,8),(17,21,25,29),(18,22,26,30),(19,23,27,31),(20,24,28,32)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(16,27)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,8,9,16),(2,15,10,7),(3,6,11,14),(4,13,12,5),(17,18,25,26),(19,32,27,24),(20,23,28,31),(21,30,29,22)]])
Matrix representation of D4.5D8 ►in GL4(F7) generated by
0 | 6 | 5 | 1 |
3 | 0 | 5 | 6 |
3 | 3 | 6 | 1 |
1 | 6 | 3 | 1 |
4 | 3 | 2 | 0 |
6 | 0 | 4 | 6 |
1 | 1 | 4 | 5 |
0 | 0 | 0 | 6 |
2 | 0 | 4 | 5 |
5 | 2 | 3 | 5 |
5 | 2 | 1 | 4 |
4 | 4 | 5 | 3 |
3 | 6 | 3 | 3 |
6 | 5 | 2 | 5 |
6 | 1 | 0 | 2 |
2 | 4 | 0 | 6 |
G:=sub<GL(4,GF(7))| [0,3,3,1,6,0,3,6,5,5,6,3,1,6,1,1],[4,6,1,0,3,0,1,0,2,4,4,0,0,6,5,6],[2,5,5,4,0,2,2,4,4,3,1,5,5,5,4,3],[3,6,6,2,6,5,1,4,3,2,0,0,3,5,2,6] >;
D4.5D8 in GAP, Magma, Sage, TeX
D_4._5D_8
% in TeX
G:=Group("D4.5D8");
// GroupNames label
G:=SmallGroup(128,955);
// by ID
G=gap.SmallGroup(128,955);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,736,422,1123,360,2804,718,172,4037,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=1,c^8=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^7>;
// generators/relations
Export