p-group, metabelian, nilpotent (class 3), monomial
Aliases: C16○D8, C16○Q16, C16○SD16, D8.2C8, C16.14D4, Q16.2C8, SD16.2C8, M5(2).24C22, C16○C4≀C2, C4≀C2.2C4, (C4×C16)⋊17C2, C16○(C8○D8), C16○(C4○D8), D4○C16⋊6C2, C8.11(C2×C8), D4.C8⋊7C2, C8○D8.7C2, C4○D8.7C4, D4.3(C2×C8), C2.18(C8×D4), Q8.3(C2×C8), C16○(D4.C8), C4.178(C4×D4), C8.141(C2×D4), C16○(C8.C8), C16○(C8.C4), C8.C8⋊14C2, C8.C4.7C4, C8.60(C4○D4), C4.15(C22×C8), (C2×C8).607C23, C42.274(C2×C4), (C4×C8).421C22, (C2×C16).68C22, C8○D4.17C22, C22.1(C8○D4), M4(2).23(C2×C4), (C2×C8).181(C2×C4), C4○D4.18(C2×C4), (C2×C4).446(C22×C4), SmallGroup(128,902)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C16○D8
G = < a,b,c | a16=c2=1, b4=a8, ab=ba, ac=ca, cbc=a8b3 >
Subgroups: 104 in 73 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C16, C16, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, C4×C8, C4≀C2, C8.C4, C2×C16, C2×C16, M5(2), M5(2), C8○D4, C4○D8, C4×C16, D4.C8, C8.C8, C8○D8, D4○C16, C16○D8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C2×C8, C22×C4, C2×D4, C4○D4, C4×D4, C22×C8, C8○D4, C8×D4, C16○D8
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 3 5 7 9 11 13 15)(2 4 6 8 10 12 14 16)(17 31 29 27 25 23 21 19)(18 32 30 28 26 24 22 20)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 17)(13 18)(14 19)(15 20)(16 21)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16)(17,31,29,27,25,23,21,19)(18,32,30,28,26,24,22,20), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,17)(13,18)(14,19)(15,20)(16,21)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16)(17,31,29,27,25,23,21,19)(18,32,30,28,26,24,22,20), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,17)(13,18)(14,19)(15,20)(16,21) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,3,5,7,9,11,13,15),(2,4,6,8,10,12,14,16),(17,31,29,27,25,23,21,19),(18,32,30,28,26,24,22,20)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,17),(13,18),(14,19),(15,20),(16,21)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | ··· | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | ··· | 8J | 8K | 8L | 8M | 8N | 16A | ··· | 16H | 16I | ··· | 16T | 16U | ··· | 16AB |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 16 | ··· | 16 | 16 | ··· | 16 | 16 | ··· | 16 |
size | 1 | 1 | 2 | 4 | 4 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C8 | C8 | C8 | D4 | C4○D4 | C8○D4 | C16○D8 |
kernel | C16○D8 | C4×C16 | D4.C8 | C8.C8 | C8○D8 | D4○C16 | C4≀C2 | C8.C4 | C4○D8 | D8 | SD16 | Q16 | C16 | C8 | C22 | C1 |
# reps | 1 | 1 | 2 | 1 | 1 | 2 | 4 | 2 | 2 | 4 | 8 | 4 | 2 | 2 | 4 | 16 |
Matrix representation of C16○D8 ►in GL2(𝔽17) generated by
6 | 0 |
0 | 6 |
2 | 0 |
0 | 9 |
0 | 9 |
2 | 0 |
G:=sub<GL(2,GF(17))| [6,0,0,6],[2,0,0,9],[0,2,9,0] >;
C16○D8 in GAP, Magma, Sage, TeX
C_{16}\circ D_8
% in TeX
G:=Group("C16oD8");
// GroupNames label
G:=SmallGroup(128,902);
// by ID
G=gap.SmallGroup(128,902);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,100,2019,1018,248,102,124]);
// Polycyclic
G:=Group<a,b,c|a^16=c^2=1,b^4=a^8,a*b=b*a,a*c=c*a,c*b*c=a^8*b^3>;
// generators/relations