Extensions 1→N→G→Q→1 with N=C2xQ32 and Q=C2

Direct product G=NxQ with N=C2xQ32 and Q=C2
dρLabelID
C22xQ32128C2^2xQ32128,2142

Semidirect products G=N:Q with N=C2xQ32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ32):1C2 = Q16.8D4φ: C2/C1C2 ⊆ Out C2xQ3264(C2xQ32):1C2128,920
(C2xQ32):2C2 = D8.10D4φ: C2/C1C2 ⊆ Out C2xQ3264(C2xQ32):2C2128,921
(C2xQ32):3C2 = D8.12D4φ: C2/C1C2 ⊆ Out C2xQ32644-(C2xQ32):3C2128,927
(C2xQ32):4C2 = Q16.5D4φ: C2/C1C2 ⊆ Out C2xQ3264(C2xQ32):4C2128,943
(C2xQ32):5C2 = C16.19D4φ: C2/C1C2 ⊆ Out C2xQ3264(C2xQ32):5C2128,948
(C2xQ32):6C2 = C8.21D8φ: C2/C1C2 ⊆ Out C2xQ3264(C2xQ32):6C2128,981
(C2xQ32):7C2 = C2xSD64φ: C2/C1C2 ⊆ Out C2xQ3264(C2xQ32):7C2128,992
(C2xQ32):8C2 = C16.D4φ: C2/C1C2 ⊆ Out C2xQ3264(C2xQ32):8C2128,951
(C2xQ32):9C2 = D4.4D8φ: C2/C1C2 ⊆ Out C2xQ32644-(C2xQ32):9C2128,954
(C2xQ32):10C2 = C8.7D8φ: C2/C1C2 ⊆ Out C2xQ3264(C2xQ32):10C2128,983
(C2xQ32):11C2 = Q64:C2φ: C2/C1C2 ⊆ Out C2xQ32644-(C2xQ32):11C2128,996
(C2xQ32):12C2 = C2xQ32:C2φ: C2/C1C2 ⊆ Out C2xQ3264(C2xQ32):12C2128,2145
(C2xQ32):13C2 = Q8oD16φ: C2/C1C2 ⊆ Out C2xQ32644-(C2xQ32):13C2128,2149
(C2xQ32):14C2 = C2xC4oD16φ: trivial image64(C2xQ32):14C2128,2143

Non-split extensions G=N.Q with N=C2xQ32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ32).1C2 = Q32:2C4φ: C2/C1C2 ⊆ Out C2xQ32128(C2xQ32).1C2128,148
(C2xQ32).2C2 = Q16.4D4φ: C2/C1C2 ⊆ Out C2xQ32128(C2xQ32).2C2128,941
(C2xQ32).3C2 = C4:Q32φ: C2/C1C2 ⊆ Out C2xQ32128(C2xQ32).3C2128,979
(C2xQ32).4C2 = C2xQ64φ: C2/C1C2 ⊆ Out C2xQ32128(C2xQ32).4C2128,993
(C2xQ32).5C2 = C16.18D4φ: C2/C1C2 ⊆ Out C2xQ32644-(C2xQ32).5C2128,152
(C2xQ32).6C2 = Q32:4C4φ: C2/C1C2 ⊆ Out C2xQ32128(C2xQ32).6C2128,908
(C2xQ32).7C2 = C4xQ32φ: trivial image128(C2xQ32).7C2128,906

׿
x
:
Z
F
o
wr
Q
<