p-group, metabelian, nilpotent (class 5), monomial
Aliases: C16.18D4, C4.12D16, Q32.2C4, C8.6SD16, M6(2).3C2, C22.4SD32, C16.6(C2×C4), (C2×C8).86D4, (C2×C4).14D8, (C2×Q32).5C2, C8.4Q8.2C2, C8.18(C22⋊C4), (C2×C16).15C22, C4.18(D4⋊C4), C2.11(C2.D16), SmallGroup(128,152)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C16.18D4
G = < a,b,c | a16=1, b4=a8, c2=bab-1=a-1, ac=ca, cbc-1=a-1b3 >
Character table of C16.18D4
class | 1 | 2A | 2B | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 16A | 16B | 16C | 16D | 16E | 16F | 32A | 32B | 32C | 32D | 32E | 32F | 32G | 32H | |
size | 1 | 1 | 2 | 2 | 2 | 16 | 16 | 2 | 2 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | i | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | i | -i | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | i | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | i | -i | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | orthogonal lifted from D16 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ165+ζ163 | ζ1615-ζ169 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | orthogonal lifted from D16 |
ρ15 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ1615-ζ169 | ζ1615-ζ169 | ζ165-ζ163 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ16 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -ζ1615+ζ169 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ19 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ20 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from SD32 |
ρ21 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from SD32 |
ρ22 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from SD32 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | -2ζ165+2ζ163 | -2ζ1615+2ζ169 | 2ζ165-2ζ163 | 2ζ1615-2ζ169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 2ζ1615-2ζ169 | -2ζ165+2ζ163 | -2ζ1615+2ζ169 | 2ζ165-2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 2ζ165-2ζ163 | 2ζ1615-2ζ169 | -2ζ165+2ζ163 | -2ζ1615+2ζ169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | -2ζ1615+2ζ169 | 2ζ165-2ζ163 | 2ζ1615-2ζ169 | -2ζ165+2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3)(2 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4)(33 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35)(34 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36)
(1 62 9 54 17 46 25 38)(2 53 26 61 18 37 10 45)(3 60 11 52 19 44 27 36)(4 51 28 59 20 35 12 43)(5 58 13 50 21 42 29 34)(6 49 30 57 22 33 14 41)(7 56 15 48 23 40 31 64)(8 47 32 55 24 63 16 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,31,29,27,25,23,21,19,17,15,13,11,9,7,5,3)(2,32,30,28,26,24,22,20,18,16,14,12,10,8,6,4)(33,63,61,59,57,55,53,51,49,47,45,43,41,39,37,35)(34,64,62,60,58,56,54,52,50,48,46,44,42,40,38,36), (1,62,9,54,17,46,25,38)(2,53,26,61,18,37,10,45)(3,60,11,52,19,44,27,36)(4,51,28,59,20,35,12,43)(5,58,13,50,21,42,29,34)(6,49,30,57,22,33,14,41)(7,56,15,48,23,40,31,64)(8,47,32,55,24,63,16,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;
G:=Group( (1,31,29,27,25,23,21,19,17,15,13,11,9,7,5,3)(2,32,30,28,26,24,22,20,18,16,14,12,10,8,6,4)(33,63,61,59,57,55,53,51,49,47,45,43,41,39,37,35)(34,64,62,60,58,56,54,52,50,48,46,44,42,40,38,36), (1,62,9,54,17,46,25,38)(2,53,26,61,18,37,10,45)(3,60,11,52,19,44,27,36)(4,51,28,59,20,35,12,43)(5,58,13,50,21,42,29,34)(6,49,30,57,22,33,14,41)(7,56,15,48,23,40,31,64)(8,47,32,55,24,63,16,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,31,29,27,25,23,21,19,17,15,13,11,9,7,5,3),(2,32,30,28,26,24,22,20,18,16,14,12,10,8,6,4),(33,63,61,59,57,55,53,51,49,47,45,43,41,39,37,35),(34,64,62,60,58,56,54,52,50,48,46,44,42,40,38,36)], [(1,62,9,54,17,46,25,38),(2,53,26,61,18,37,10,45),(3,60,11,52,19,44,27,36),(4,51,28,59,20,35,12,43),(5,58,13,50,21,42,29,34),(6,49,30,57,22,33,14,41),(7,56,15,48,23,40,31,64),(8,47,32,55,24,63,16,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])
Matrix representation of C16.18D4 ►in GL4(𝔽97) generated by
2 | 26 | 0 | 0 |
71 | 2 | 0 | 0 |
0 | 0 | 2 | 71 |
0 | 0 | 26 | 2 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 96 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 22 |
0 | 0 | 22 | 0 |
10 | 53 | 0 | 0 |
53 | 87 | 0 | 0 |
G:=sub<GL(4,GF(97))| [2,71,0,0,26,2,0,0,0,0,2,26,0,0,71,2],[0,0,0,1,0,0,96,0,1,0,0,0,0,1,0,0],[0,0,10,53,0,0,53,87,0,22,0,0,22,0,0,0] >;
C16.18D4 in GAP, Magma, Sage, TeX
C_{16}._{18}D_4
% in TeX
G:=Group("C16.18D4");
// GroupNames label
G:=SmallGroup(128,152);
// by ID
G=gap.SmallGroup(128,152);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,456,422,891,604,1018,248,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c|a^16=1,b^4=a^8,c^2=b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b^3>;
// generators/relations
Export
Subgroup lattice of C16.18D4 in TeX
Character table of C16.18D4 in TeX