p-group, metabelian, nilpotent (class 5), monomial
Aliases: Q32⋊2C4, C2.1Q64, C16.16D4, C2.2SD64, C4.2SD32, C8.16SD16, C22.9D16, (C2×C32).1C2, (C2×C4).66D8, C16.11(C2×C4), (C2×C8).238D4, (C2×Q32).1C2, C16⋊3C4.1C2, C2.7(C2.D16), C8.14(C22⋊C4), (C2×C16).76C22, C4.14(D4⋊C4), SmallGroup(128,148)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q32⋊2C4
G = < a,b,c | a16=c4=1, b2=a8, bab-1=cac-1=a-1, cbc-1=a-1b >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 72 9 80)(2 71 10 79)(3 70 11 78)(4 69 12 77)(5 68 13 76)(6 67 14 75)(7 66 15 74)(8 65 16 73)(17 49 25 57)(18 64 26 56)(19 63 27 55)(20 62 28 54)(21 61 29 53)(22 60 30 52)(23 59 31 51)(24 58 32 50)(33 108 41 100)(34 107 42 99)(35 106 43 98)(36 105 44 97)(37 104 45 112)(38 103 46 111)(39 102 47 110)(40 101 48 109)(81 116 89 124)(82 115 90 123)(83 114 91 122)(84 113 92 121)(85 128 93 120)(86 127 94 119)(87 126 95 118)(88 125 96 117)
(1 83 39 22)(2 82 40 21)(3 81 41 20)(4 96 42 19)(5 95 43 18)(6 94 44 17)(7 93 45 32)(8 92 46 31)(9 91 47 30)(10 90 48 29)(11 89 33 28)(12 88 34 27)(13 87 35 26)(14 86 36 25)(15 85 37 24)(16 84 38 23)(49 68 119 98)(50 67 120 97)(51 66 121 112)(52 65 122 111)(53 80 123 110)(54 79 124 109)(55 78 125 108)(56 77 126 107)(57 76 127 106)(58 75 128 105)(59 74 113 104)(60 73 114 103)(61 72 115 102)(62 71 116 101)(63 70 117 100)(64 69 118 99)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,72,9,80)(2,71,10,79)(3,70,11,78)(4,69,12,77)(5,68,13,76)(6,67,14,75)(7,66,15,74)(8,65,16,73)(17,49,25,57)(18,64,26,56)(19,63,27,55)(20,62,28,54)(21,61,29,53)(22,60,30,52)(23,59,31,51)(24,58,32,50)(33,108,41,100)(34,107,42,99)(35,106,43,98)(36,105,44,97)(37,104,45,112)(38,103,46,111)(39,102,47,110)(40,101,48,109)(81,116,89,124)(82,115,90,123)(83,114,91,122)(84,113,92,121)(85,128,93,120)(86,127,94,119)(87,126,95,118)(88,125,96,117), (1,83,39,22)(2,82,40,21)(3,81,41,20)(4,96,42,19)(5,95,43,18)(6,94,44,17)(7,93,45,32)(8,92,46,31)(9,91,47,30)(10,90,48,29)(11,89,33,28)(12,88,34,27)(13,87,35,26)(14,86,36,25)(15,85,37,24)(16,84,38,23)(49,68,119,98)(50,67,120,97)(51,66,121,112)(52,65,122,111)(53,80,123,110)(54,79,124,109)(55,78,125,108)(56,77,126,107)(57,76,127,106)(58,75,128,105)(59,74,113,104)(60,73,114,103)(61,72,115,102)(62,71,116,101)(63,70,117,100)(64,69,118,99)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,72,9,80)(2,71,10,79)(3,70,11,78)(4,69,12,77)(5,68,13,76)(6,67,14,75)(7,66,15,74)(8,65,16,73)(17,49,25,57)(18,64,26,56)(19,63,27,55)(20,62,28,54)(21,61,29,53)(22,60,30,52)(23,59,31,51)(24,58,32,50)(33,108,41,100)(34,107,42,99)(35,106,43,98)(36,105,44,97)(37,104,45,112)(38,103,46,111)(39,102,47,110)(40,101,48,109)(81,116,89,124)(82,115,90,123)(83,114,91,122)(84,113,92,121)(85,128,93,120)(86,127,94,119)(87,126,95,118)(88,125,96,117), (1,83,39,22)(2,82,40,21)(3,81,41,20)(4,96,42,19)(5,95,43,18)(6,94,44,17)(7,93,45,32)(8,92,46,31)(9,91,47,30)(10,90,48,29)(11,89,33,28)(12,88,34,27)(13,87,35,26)(14,86,36,25)(15,85,37,24)(16,84,38,23)(49,68,119,98)(50,67,120,97)(51,66,121,112)(52,65,122,111)(53,80,123,110)(54,79,124,109)(55,78,125,108)(56,77,126,107)(57,76,127,106)(58,75,128,105)(59,74,113,104)(60,73,114,103)(61,72,115,102)(62,71,116,101)(63,70,117,100)(64,69,118,99) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,72,9,80),(2,71,10,79),(3,70,11,78),(4,69,12,77),(5,68,13,76),(6,67,14,75),(7,66,15,74),(8,65,16,73),(17,49,25,57),(18,64,26,56),(19,63,27,55),(20,62,28,54),(21,61,29,53),(22,60,30,52),(23,59,31,51),(24,58,32,50),(33,108,41,100),(34,107,42,99),(35,106,43,98),(36,105,44,97),(37,104,45,112),(38,103,46,111),(39,102,47,110),(40,101,48,109),(81,116,89,124),(82,115,90,123),(83,114,91,122),(84,113,92,121),(85,128,93,120),(86,127,94,119),(87,126,95,118),(88,125,96,117)], [(1,83,39,22),(2,82,40,21),(3,81,41,20),(4,96,42,19),(5,95,43,18),(6,94,44,17),(7,93,45,32),(8,92,46,31),(9,91,47,30),(10,90,48,29),(11,89,33,28),(12,88,34,27),(13,87,35,26),(14,86,36,25),(15,85,37,24),(16,84,38,23),(49,68,119,98),(50,67,120,97),(51,66,121,112),(52,65,122,111),(53,80,123,110),(54,79,124,109),(55,78,125,108),(56,77,126,107),(57,76,127,106),(58,75,128,105),(59,74,113,104),(60,73,114,103),(61,72,115,102),(62,71,116,101),(63,70,117,100),(64,69,118,99)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 16A | ··· | 16H | 32A | ··· | 32P |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | ··· | 16 | 32 | ··· | 32 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 16 | 16 | 16 | 16 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | - | ||||
image | C1 | C2 | C2 | C2 | C4 | D4 | D4 | SD16 | D8 | SD32 | D16 | SD64 | Q64 |
kernel | Q32⋊2C4 | C16⋊3C4 | C2×C32 | C2×Q32 | Q32 | C16 | C2×C8 | C8 | C2×C4 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 8 |
Matrix representation of Q32⋊2C4 ►in GL3(𝔽97) generated by
1 | 0 | 0 |
0 | 79 | 0 |
0 | 0 | 70 |
1 | 0 | 0 |
0 | 0 | 96 |
0 | 1 | 0 |
75 | 0 | 0 |
0 | 0 | 51 |
0 | 19 | 0 |
G:=sub<GL(3,GF(97))| [1,0,0,0,79,0,0,0,70],[1,0,0,0,0,1,0,96,0],[75,0,0,0,0,19,0,51,0] >;
Q32⋊2C4 in GAP, Magma, Sage, TeX
Q_{32}\rtimes_2C_4
% in TeX
G:=Group("Q32:2C4");
// GroupNames label
G:=SmallGroup(128,148);
// by ID
G=gap.SmallGroup(128,148);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,456,422,219,268,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c|a^16=c^4=1,b^2=a^8,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^-1*b>;
// generators/relations
Export