Copied to
clipboard

G = Q322C4order 128 = 27

1st semidirect product of Q32 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 5), monomial

Aliases: Q322C4, C2.1Q64, C16.16D4, C2.2SD64, C4.2SD32, C8.16SD16, C22.9D16, (C2×C32).1C2, (C2×C4).66D8, C16.11(C2×C4), (C2×C8).238D4, (C2×Q32).1C2, C163C4.1C2, C2.7(C2.D16), C8.14(C22⋊C4), (C2×C16).76C22, C4.14(D4⋊C4), SmallGroup(128,148)

Series: Derived Chief Lower central Upper central Jennings

C1C16 — Q322C4
C1C2C4C8C2×C8C2×C16C2×Q32 — Q322C4
C1C2C4C8C16 — Q322C4
C1C22C2×C4C2×C8C2×C16 — Q322C4
C1C2C2C2C2C2C2C2C2C4C4C4C4C8C8C2×C16 — Q322C4

Generators and relations for Q322C4
 G = < a,b,c | a16=c4=1, b2=a8, bab-1=cac-1=a-1, cbc-1=a-1b >

8C4
8C4
16C4
4Q8
4Q8
8C2×C4
8Q8
8C2×C4
2Q16
2Q16
4C2×Q8
4Q16
4C4⋊C4
2C32
2Q32
2C2×Q16
2C2.D8

Smallest permutation representation of Q322C4
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 72 9 80)(2 71 10 79)(3 70 11 78)(4 69 12 77)(5 68 13 76)(6 67 14 75)(7 66 15 74)(8 65 16 73)(17 49 25 57)(18 64 26 56)(19 63 27 55)(20 62 28 54)(21 61 29 53)(22 60 30 52)(23 59 31 51)(24 58 32 50)(33 108 41 100)(34 107 42 99)(35 106 43 98)(36 105 44 97)(37 104 45 112)(38 103 46 111)(39 102 47 110)(40 101 48 109)(81 116 89 124)(82 115 90 123)(83 114 91 122)(84 113 92 121)(85 128 93 120)(86 127 94 119)(87 126 95 118)(88 125 96 117)
(1 83 39 22)(2 82 40 21)(3 81 41 20)(4 96 42 19)(5 95 43 18)(6 94 44 17)(7 93 45 32)(8 92 46 31)(9 91 47 30)(10 90 48 29)(11 89 33 28)(12 88 34 27)(13 87 35 26)(14 86 36 25)(15 85 37 24)(16 84 38 23)(49 68 119 98)(50 67 120 97)(51 66 121 112)(52 65 122 111)(53 80 123 110)(54 79 124 109)(55 78 125 108)(56 77 126 107)(57 76 127 106)(58 75 128 105)(59 74 113 104)(60 73 114 103)(61 72 115 102)(62 71 116 101)(63 70 117 100)(64 69 118 99)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,72,9,80)(2,71,10,79)(3,70,11,78)(4,69,12,77)(5,68,13,76)(6,67,14,75)(7,66,15,74)(8,65,16,73)(17,49,25,57)(18,64,26,56)(19,63,27,55)(20,62,28,54)(21,61,29,53)(22,60,30,52)(23,59,31,51)(24,58,32,50)(33,108,41,100)(34,107,42,99)(35,106,43,98)(36,105,44,97)(37,104,45,112)(38,103,46,111)(39,102,47,110)(40,101,48,109)(81,116,89,124)(82,115,90,123)(83,114,91,122)(84,113,92,121)(85,128,93,120)(86,127,94,119)(87,126,95,118)(88,125,96,117), (1,83,39,22)(2,82,40,21)(3,81,41,20)(4,96,42,19)(5,95,43,18)(6,94,44,17)(7,93,45,32)(8,92,46,31)(9,91,47,30)(10,90,48,29)(11,89,33,28)(12,88,34,27)(13,87,35,26)(14,86,36,25)(15,85,37,24)(16,84,38,23)(49,68,119,98)(50,67,120,97)(51,66,121,112)(52,65,122,111)(53,80,123,110)(54,79,124,109)(55,78,125,108)(56,77,126,107)(57,76,127,106)(58,75,128,105)(59,74,113,104)(60,73,114,103)(61,72,115,102)(62,71,116,101)(63,70,117,100)(64,69,118,99)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,72,9,80)(2,71,10,79)(3,70,11,78)(4,69,12,77)(5,68,13,76)(6,67,14,75)(7,66,15,74)(8,65,16,73)(17,49,25,57)(18,64,26,56)(19,63,27,55)(20,62,28,54)(21,61,29,53)(22,60,30,52)(23,59,31,51)(24,58,32,50)(33,108,41,100)(34,107,42,99)(35,106,43,98)(36,105,44,97)(37,104,45,112)(38,103,46,111)(39,102,47,110)(40,101,48,109)(81,116,89,124)(82,115,90,123)(83,114,91,122)(84,113,92,121)(85,128,93,120)(86,127,94,119)(87,126,95,118)(88,125,96,117), (1,83,39,22)(2,82,40,21)(3,81,41,20)(4,96,42,19)(5,95,43,18)(6,94,44,17)(7,93,45,32)(8,92,46,31)(9,91,47,30)(10,90,48,29)(11,89,33,28)(12,88,34,27)(13,87,35,26)(14,86,36,25)(15,85,37,24)(16,84,38,23)(49,68,119,98)(50,67,120,97)(51,66,121,112)(52,65,122,111)(53,80,123,110)(54,79,124,109)(55,78,125,108)(56,77,126,107)(57,76,127,106)(58,75,128,105)(59,74,113,104)(60,73,114,103)(61,72,115,102)(62,71,116,101)(63,70,117,100)(64,69,118,99) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,72,9,80),(2,71,10,79),(3,70,11,78),(4,69,12,77),(5,68,13,76),(6,67,14,75),(7,66,15,74),(8,65,16,73),(17,49,25,57),(18,64,26,56),(19,63,27,55),(20,62,28,54),(21,61,29,53),(22,60,30,52),(23,59,31,51),(24,58,32,50),(33,108,41,100),(34,107,42,99),(35,106,43,98),(36,105,44,97),(37,104,45,112),(38,103,46,111),(39,102,47,110),(40,101,48,109),(81,116,89,124),(82,115,90,123),(83,114,91,122),(84,113,92,121),(85,128,93,120),(86,127,94,119),(87,126,95,118),(88,125,96,117)], [(1,83,39,22),(2,82,40,21),(3,81,41,20),(4,96,42,19),(5,95,43,18),(6,94,44,17),(7,93,45,32),(8,92,46,31),(9,91,47,30),(10,90,48,29),(11,89,33,28),(12,88,34,27),(13,87,35,26),(14,86,36,25),(15,85,37,24),(16,84,38,23),(49,68,119,98),(50,67,120,97),(51,66,121,112),(52,65,122,111),(53,80,123,110),(54,79,124,109),(55,78,125,108),(56,77,126,107),(57,76,127,106),(58,75,128,105),(59,74,113,104),(60,73,114,103),(61,72,115,102),(62,71,116,101),(63,70,117,100),(64,69,118,99)]])

38 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F8A8B8C8D16A···16H32A···32P
order1222444444888816···1632···32
size1111221616161622222···22···2

38 irreducible representations

dim1111122222222
type++++++++-
imageC1C2C2C2C4D4D4SD16D8SD32D16SD64Q64
kernelQ322C4C163C4C2×C32C2×Q32Q32C16C2×C8C8C2×C4C4C22C2C2
# reps1111411224488

Matrix representation of Q322C4 in GL3(𝔽97) generated by

100
0790
0070
,
100
0096
010
,
7500
0051
0190
G:=sub<GL(3,GF(97))| [1,0,0,0,79,0,0,0,70],[1,0,0,0,0,1,0,96,0],[75,0,0,0,0,19,0,51,0] >;

Q322C4 in GAP, Magma, Sage, TeX

Q_{32}\rtimes_2C_4
% in TeX

G:=Group("Q32:2C4");
// GroupNames label

G:=SmallGroup(128,148);
// by ID

G=gap.SmallGroup(128,148);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,456,422,219,268,1684,851,242,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c|a^16=c^4=1,b^2=a^8,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^-1*b>;
// generators/relations

Export

Subgroup lattice of Q322C4 in TeX

׿
×
𝔽