Extensions 1→N→G→Q→1 with N=C4○D16 and Q=C2

Direct product G=N×Q with N=C4○D16 and Q=C2
dρLabelID
C2×C4○D1664C2xC4oD16128,2143

Semidirect products G=N:Q with N=C4○D16 and Q=C2
extensionφ:Q→Out NdρLabelID
C4○D161C2 = C4○D32φ: C2/C1C2 ⊆ Out C4○D16642C4oD16:1C2128,994
C4○D162C2 = C32⋊C22φ: C2/C1C2 ⊆ Out C4○D16324+C4oD16:2C2128,995
C4○D163C2 = D16⋊C22φ: C2/C1C2 ⊆ Out C4○D16324C4oD16:3C2128,2146
C4○D164C2 = D4○D16φ: C2/C1C2 ⊆ Out C4○D16324+C4oD16:4C2128,2147
C4○D165C2 = D4○SD32φ: C2/C1C2 ⊆ Out C4○D16324C4oD16:5C2128,2148
C4○D166C2 = Q8○D16φ: C2/C1C2 ⊆ Out C4○D16644-C4oD16:6C2128,2149

Non-split extensions G=N.Q with N=C4○D16 and Q=C2
extensionφ:Q→Out NdρLabelID
C4○D16.1C2 = D16.C4φ: C2/C1C2 ⊆ Out C4○D16642C4oD16.1C2128,149
C4○D16.2C2 = D163C4φ: C2/C1C2 ⊆ Out C4○D16324C4oD16.2C2128,150
C4○D16.3C2 = D165C4φ: C2/C1C2 ⊆ Out C4○D16324C4oD16.3C2128,911
C4○D16.4C2 = Q64⋊C2φ: C2/C1C2 ⊆ Out C4○D16644-C4oD16.4C2128,996
C4○D16.5C2 = C8○D16φ: trivial image322C4oD16.5C2128,910

׿
×
𝔽