Copied to
clipboard

G = D16:5C4order 128 = 27

4th semidirect product of D16 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: D16:5C4, Q32:5C4, C8.33D8, SD32:4C4, C42.135D4, C8oD8:2C2, C16.9(C2xC4), C16:5C4:3C2, D8.5(C2xC4), C2.20(C4xD8), C4.32(C4xD4), C4.93(C2xD8), C4oD16.3C2, (C2xC8).213D4, Q16.5(C2xC4), C8.4Q8:4C2, D8.C4:6C2, C8.59(C4oD4), C8.42(C22xC4), (C4xC8).161C22, (C2xC8).581C23, (C2xC16).22C22, C4oD8.15C22, C22.2(C4oD8), C8.C4.17C22, (C2xC4).775(C2xD4), SmallGroup(128,911)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — D16:5C4
C1C2C4C2xC4C2xC8C4xC8C8oD8 — D16:5C4
C1C2C4C8 — D16:5C4
C1C4C2xC8C4xC8 — D16:5C4
C1C2C2C2C2C4C4C2xC8 — D16:5C4

Generators and relations for D16:5C4
 G = < a,b,c | a16=b2=c4=1, bab=a-1, cac-1=a9, cbc-1=a4b >

Subgroups: 148 in 72 conjugacy classes, 38 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C8, C2xC4, C2xC4, D4, Q8, C16, C16, C42, C2xC8, C2xC8, M4(2), D8, SD16, Q16, C4oD4, C4xC8, C4wrC2, C8.C4, C2xC16, D16, SD32, Q32, C8oD4, C4oD8, C16:5C4, D8.C4, C8.4Q8, C8oD8, C4oD16, D16:5C4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, D8, C22xC4, C2xD4, C4oD4, C4xD4, C2xD8, C4oD8, C4xD8, D16:5C4

Smallest permutation representation of D16:5C4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 18)(2 17)(3 32)(4 31)(5 30)(6 29)(7 28)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 21)(15 20)(16 19)
(2 10)(4 12)(6 14)(8 16)(17 29 25 21)(18 22 26 30)(19 31 27 23)(20 24 28 32)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,18)(2,17)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19), (2,10)(4,12)(6,14)(8,16)(17,29,25,21)(18,22,26,30)(19,31,27,23)(20,24,28,32)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,18)(2,17)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19), (2,10)(4,12)(6,14)(8,16)(17,29,25,21)(18,22,26,30)(19,31,27,23)(20,24,28,32) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,18),(2,17),(3,32),(4,31),(5,30),(6,29),(7,28),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,21),(15,20),(16,19)], [(2,10),(4,12),(6,14),(8,16),(17,29,25,21),(18,22,26,30),(19,31,27,23),(20,24,28,32)]])

32 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G8A···8H8I8J8K8L16A···16H
order1222244444448···8888816···16
size1128811244882···288884···4

32 irreducible representations

dim111111111222224
type+++++++++
imageC1C2C2C2C2C2C4C4C4D4D4D8C4oD4C4oD8D16:5C4
kernelD16:5C4C16:5C4D8.C4C8.4Q8C8oD8C4oD16D16SD32Q32C42C2xC8C8C8C22C1
# reps112121242114244

Matrix representation of D16:5C4 in GL4(F17) generated by

00015
00150
01300
1000
,
00150
00015
8000
0800
,
1000
0400
00130
00016
G:=sub<GL(4,GF(17))| [0,0,0,1,0,0,13,0,0,15,0,0,15,0,0,0],[0,0,8,0,0,0,0,8,15,0,0,0,0,15,0,0],[1,0,0,0,0,4,0,0,0,0,13,0,0,0,0,16] >;

D16:5C4 in GAP, Magma, Sage, TeX

D_{16}\rtimes_5C_4
% in TeX

G:=Group("D16:5C4");
// GroupNames label

G:=SmallGroup(128,911);
// by ID

G=gap.SmallGroup(128,911);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,1430,100,1123,570,360,172,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c|a^16=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^4*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<