p-group, metabelian, nilpotent (class 5), monomial
Aliases: D16⋊3C4, Q32⋊3C4, C16.23D4, C8.4SD16, C4.8SD32, M6(2)⋊5C2, C22.3D16, C16.4(C2×C4), C16⋊4C4⋊1C2, (C2×C4).12D8, (C2×C8).84D4, C4○D16.2C2, C2.9(C2.D16), C8.16(C22⋊C4), (C2×C16).13C22, C4.16(D4⋊C4), SmallGroup(128,150)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D16⋊3C4
G = < a,b,c | a16=b2=c4=1, bab=a-1, cac-1=a7, cbc-1=a13b >
Character table of D16⋊3C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 16A | 16B | 16C | 16D | 16E | 16F | 32A | 32B | 32C | 32D | 32E | 32F | 32G | 32H | |
size | 1 | 1 | 2 | 16 | 2 | 2 | 16 | 16 | 16 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ12 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ15 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | ζ167-ζ16 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ16 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ17 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ19 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from SD32 |
ρ21 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from SD32 |
ρ22 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from SD32 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 2ζ165+2ζ163 | 2ζ167+2ζ16 | 2ζ1613+2ζ1611 | 2ζ1615+2ζ169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 2ζ1615+2ζ169 | 2ζ165+2ζ163 | 2ζ167+2ζ16 | 2ζ1613+2ζ1611 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 2ζ167+2ζ16 | 2ζ1613+2ζ1611 | 2ζ1615+2ζ169 | 2ζ165+2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 2ζ1613+2ζ1611 | 2ζ1615+2ζ169 | 2ζ165+2ζ163 | 2ζ167+2ζ16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 32)(7 31)(8 30)(9 29)(10 28)(11 27)(12 26)(13 25)(14 24)(15 23)(16 22)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 20 25 28)(18 27 26 19)(21 32 29 24)(22 23 30 31)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,21)(2,20)(3,19)(4,18)(5,17)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,20,25,28)(18,27,26,19)(21,32,29,24)(22,23,30,31)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,21)(2,20)(3,19)(4,18)(5,17)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,20,25,28)(18,27,26,19)(21,32,29,24)(22,23,30,31) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,32),(7,31),(8,30),(9,29),(10,28),(11,27),(12,26),(13,25),(14,24),(15,23),(16,22)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,20,25,28),(18,27,26,19),(21,32,29,24),(22,23,30,31)]])
Matrix representation of D16⋊3C4 ►in GL4(𝔽7) generated by
0 | 0 | 0 | 3 |
1 | 0 | 0 | 6 |
1 | 0 | 2 | 1 |
3 | 6 | 3 | 5 |
5 | 6 | 0 | 3 |
4 | 2 | 2 | 2 |
2 | 4 | 2 | 1 |
5 | 0 | 3 | 5 |
1 | 3 | 2 | 1 |
1 | 0 | 4 | 2 |
1 | 4 | 5 | 1 |
3 | 2 | 4 | 1 |
G:=sub<GL(4,GF(7))| [0,1,1,3,0,0,0,6,0,0,2,3,3,6,1,5],[5,4,2,5,6,2,4,0,0,2,2,3,3,2,1,5],[1,1,1,3,3,0,4,2,2,4,5,4,1,2,1,1] >;
D16⋊3C4 in GAP, Magma, Sage, TeX
D_{16}\rtimes_3C_4
% in TeX
G:=Group("D16:3C4");
// GroupNames label
G:=SmallGroup(128,150);
// by ID
G=gap.SmallGroup(128,150);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,422,891,604,1018,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c|a^16=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^13*b>;
// generators/relations
Export
Subgroup lattice of D16⋊3C4 in TeX
Character table of D16⋊3C4 in TeX