extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4×Q8)⋊1C2 = (C2×SD16)⋊15C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):1C2 | 128,612 |
(C2×C4×Q8)⋊2C2 = C4×C22⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):2C2 | 128,1034 |
(C2×C4×Q8)⋊3C2 = C4×C4.4D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):3C2 | 128,1035 |
(C2×C4×Q8)⋊4C2 = C42.159D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):4C2 | 128,1055 |
(C2×C4×Q8)⋊5C2 = C42.160D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):5C2 | 128,1058 |
(C2×C4×Q8)⋊6C2 = Q8×C22⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):6C2 | 128,1072 |
(C2×C4×Q8)⋊7C2 = C23.223C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):7C2 | 128,1073 |
(C2×C4×Q8)⋊8C2 = C24.558C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):8C2 | 128,1092 |
(C2×C4×Q8)⋊9C2 = C23.244C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):9C2 | 128,1094 |
(C2×C4×Q8)⋊10C2 = C24.220C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):10C2 | 128,1099 |
(C2×C4×Q8)⋊11C2 = C42.162D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):11C2 | 128,1128 |
(C2×C4×Q8)⋊12C2 = C42.163D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):12C2 | 128,1130 |
(C2×C4×Q8)⋊13C2 = C23.321C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):13C2 | 128,1153 |
(C2×C4×Q8)⋊14C2 = C23.323C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):14C2 | 128,1155 |
(C2×C4×Q8)⋊15C2 = C24.259C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):15C2 | 128,1158 |
(C2×C4×Q8)⋊16C2 = C23.329C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):16C2 | 128,1161 |
(C2×C4×Q8)⋊17C2 = C23.348C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):17C2 | 128,1180 |
(C2×C4×Q8)⋊18C2 = C24.279C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):18C2 | 128,1190 |
(C2×C4×Q8)⋊19C2 = C24.285C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):19C2 | 128,1197 |
(C2×C4×Q8)⋊20C2 = C23.369C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):20C2 | 128,1201 |
(C2×C4×Q8)⋊21C2 = C42.165D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):21C2 | 128,1268 |
(C2×C4×Q8)⋊22C2 = C42.166D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):22C2 | 128,1270 |
(C2×C4×Q8)⋊23C2 = C42.168D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):23C2 | 128,1277 |
(C2×C4×Q8)⋊24C2 = C42.171D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):24C2 | 128,1280 |
(C2×C4×Q8)⋊25C2 = C42.178D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):25C2 | 128,1312 |
(C2×C4×Q8)⋊26C2 = C42.182D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):26C2 | 128,1324 |
(C2×C4×Q8)⋊27C2 = C42.183D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):27C2 | 128,1331 |
(C2×C4×Q8)⋊28C2 = C42.184D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):28C2 | 128,1336 |
(C2×C4×Q8)⋊29C2 = C42.189D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):29C2 | 128,1364 |
(C2×C4×Q8)⋊30C2 = C42.192D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):30C2 | 128,1369 |
(C2×C4×Q8)⋊31C2 = C2×C4×SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):31C2 | 128,1669 |
(C2×C4×Q8)⋊32C2 = C2×SD16⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):32C2 | 128,1672 |
(C2×C4×Q8)⋊33C2 = C4×C8.C22 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):33C2 | 128,1677 |
(C2×C4×Q8)⋊34C2 = C2×C4⋊SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):34C2 | 128,1764 |
(C2×C4×Q8)⋊35C2 = C2×Q8.D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):35C2 | 128,1766 |
(C2×C4×Q8)⋊36C2 = C42.212D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):36C2 | 128,1769 |
(C2×C4×Q8)⋊37C2 = C42.223D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):37C2 | 128,1835 |
(C2×C4×Q8)⋊38C2 = C42.226D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):38C2 | 128,1840 |
(C2×C4×Q8)⋊39C2 = C42.230D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):39C2 | 128,1844 |
(C2×C4×Q8)⋊40C2 = C42.235D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):40C2 | 128,1849 |
(C2×C4×Q8)⋊41C2 = C2×C23.32C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):41C2 | 128,2158 |
(C2×C4×Q8)⋊42C2 = C2×C23.33C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):42C2 | 128,2159 |
(C2×C4×Q8)⋊43C2 = C4×2- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):43C2 | 128,2162 |
(C2×C4×Q8)⋊44C2 = C2×C23.36C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):44C2 | 128,2171 |
(C2×C4×Q8)⋊45C2 = C2×C23.37C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):45C2 | 128,2175 |
(C2×C4×Q8)⋊46C2 = C2×C22.35C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):46C2 | 128,2185 |
(C2×C4×Q8)⋊47C2 = C2×C22.36C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):47C2 | 128,2186 |
(C2×C4×Q8)⋊48C2 = C22.50C25 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):48C2 | 128,2193 |
(C2×C4×Q8)⋊49C2 = C2×Q8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):49C2 | 128,2197 |
(C2×C4×Q8)⋊50C2 = C2×D4×Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):50C2 | 128,2198 |
(C2×C4×Q8)⋊51C2 = C2×Q8⋊6D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):51C2 | 128,2199 |
(C2×C4×Q8)⋊52C2 = C2×C22.46C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):52C2 | 128,2202 |
(C2×C4×Q8)⋊53C2 = C2×D4⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):53C2 | 128,2204 |
(C2×C4×Q8)⋊54C2 = C2×C22.50C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):54C2 | 128,2206 |
(C2×C4×Q8)⋊55C2 = Q8×C4○D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):55C2 | 128,2210 |
(C2×C4×Q8)⋊56C2 = C2×C22.53C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):56C2 | 128,2211 |
(C2×C4×Q8)⋊57C2 = C22.69C25 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):57C2 | 128,2212 |
(C2×C4×Q8)⋊58C2 = C22.71C25 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):58C2 | 128,2214 |
(C2×C4×Q8)⋊59C2 = C4⋊2- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):59C2 | 128,2229 |
(C2×C4×Q8)⋊60C2 = C22.96C25 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):60C2 | 128,2239 |
(C2×C4×Q8)⋊61C2 = C22.105C25 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):61C2 | 128,2248 |
(C2×C4×Q8)⋊62C2 = C22.111C25 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):62C2 | 128,2254 |
(C2×C4×Q8)⋊63C2 = C23.146C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8):63C2 | 128,2255 |
(C2×C4×Q8)⋊64C2 = C2×C4×C4○D4 | φ: trivial image | 64 | | (C2xC4xQ8):64C2 | 128,2156 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4×Q8).1C2 = C42.394D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).1C2 | 128,193 |
(C2×C4×Q8).2C2 = C42.44D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).2C2 | 128,199 |
(C2×C4×Q8).3C2 = C2×Q8⋊C8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).3C2 | 128,207 |
(C2×C4×Q8).4C2 = C42.399D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).4C2 | 128,211 |
(C2×C4×Q8).5C2 = Q8⋊M4(2) | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).5C2 | 128,219 |
(C2×C4×Q8).6C2 = Q8⋊5M4(2) | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).6C2 | 128,223 |
(C2×C4×Q8).7C2 = C4×C4.10D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).7C2 | 128,488 |
(C2×C4×Q8).8C2 = C4×Q8⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).8C2 | 128,493 |
(C2×C4×Q8).9C2 = Q8⋊C42 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).9C2 | 128,495 |
(C2×C4×Q8).10C2 = C42.97D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).10C2 | 128,533 |
(C2×C4×Q8).11C2 = C42.99D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).11C2 | 128,535 |
(C2×C4×Q8).12C2 = C42.101D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).12C2 | 128,537 |
(C2×C4×Q8).13C2 = Q8⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).13C2 | 128,595 |
(C2×C4×Q8).14C2 = Q8⋊C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).14C2 | 128,597 |
(C2×C4×Q8).15C2 = (C2×C4)⋊9Q16 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).15C2 | 128,610 |
(C2×C4×Q8).16C2 = C42.327D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).16C2 | 128,716 |
(C2×C4×Q8).17C2 = C42.120D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).17C2 | 128,717 |
(C2×C4×Q8).18C2 = Q8⋊4C42 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).18C2 | 128,1008 |
(C2×C4×Q8).19C2 = C42⋊14Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).19C2 | 128,1027 |
(C2×C4×Q8).20C2 = C4×C4⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).20C2 | 128,1039 |
(C2×C4×Q8).21C2 = C23.202C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).21C2 | 128,1052 |
(C2×C4×Q8).22C2 = C42.161D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).22C2 | 128,1059 |
(C2×C4×Q8).23C2 = Q8×C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).23C2 | 128,1082 |
(C2×C4×Q8).24C2 = C23.233C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).24C2 | 128,1083 |
(C2×C4×Q8).25C2 = C23.237C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).25C2 | 128,1087 |
(C2×C4×Q8).26C2 = C23.238C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).26C2 | 128,1088 |
(C2×C4×Q8).27C2 = C23.247C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).27C2 | 128,1097 |
(C2×C4×Q8).28C2 = C42⋊5Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).28C2 | 128,1131 |
(C2×C4×Q8).29C2 = C23.346C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).29C2 | 128,1178 |
(C2×C4×Q8).30C2 = C23.351C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).30C2 | 128,1183 |
(C2×C4×Q8).31C2 = C23.353C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).31C2 | 128,1185 |
(C2×C4×Q8).32C2 = C23.362C24 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).32C2 | 128,1194 |
(C2×C4×Q8).33C2 = C42.169D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).33C2 | 128,1278 |
(C2×C4×Q8).34C2 = C42.174D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).34C2 | 128,1297 |
(C2×C4×Q8).35C2 = C42.176D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).35C2 | 128,1299 |
(C2×C4×Q8).36C2 = C42.177D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).36C2 | 128,1300 |
(C2×C4×Q8).37C2 = C42.179D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).37C2 | 128,1313 |
(C2×C4×Q8).38C2 = C42.180D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).38C2 | 128,1314 |
(C2×C4×Q8).39C2 = C42.181D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).39C2 | 128,1316 |
(C2×C4×Q8).40C2 = C42.191D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).40C2 | 128,1366 |
(C2×C4×Q8).41C2 = C2×C4×Q16 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).41C2 | 128,1670 |
(C2×C4×Q8).42C2 = C2×Q16⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).42C2 | 128,1673 |
(C2×C4×Q8).43C2 = C2×C8⋊4Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).43C2 | 128,1691 |
(C2×C4×Q8).44C2 = Q8×M4(2) | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).44C2 | 128,1695 |
(C2×C4×Q8).45C2 = C42.695C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).45C2 | 128,1714 |
(C2×C4×Q8).46C2 = C42.302C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).46C2 | 128,1715 |
(C2×C4×Q8).47C2 = Q8.4M4(2) | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).47C2 | 128,1716 |
(C2×C4×Q8).48C2 = C2×C4⋊2Q16 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).48C2 | 128,1765 |
(C2×C4×Q8).49C2 = C2×Q8⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).49C2 | 128,1805 |
(C2×C4×Q8).50C2 = C2×C4.Q16 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).50C2 | 128,1806 |
(C2×C4×Q8).51C2 = C2×Q8.Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).51C2 | 128,1807 |
(C2×C4×Q8).52C2 = C42.220D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).52C2 | 128,1810 |
(C2×C4×Q8).53C2 = C42.224D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).53C2 | 128,1836 |
(C2×C4×Q8).54C2 = C42.231D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).54C2 | 128,1845 |
(C2×C4×Q8).55C2 = C2×Q8⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).55C2 | 128,2208 |
(C2×C4×Q8).56C2 = C2×Q82 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 128 | | (C2xC4xQ8).56C2 | 128,2209 |
(C2×C4×Q8).57C2 = C22.91C25 | φ: C2/C1 → C2 ⊆ Out C2×C4×Q8 | 64 | | (C2xC4xQ8).57C2 | 128,2234 |
(C2×C4×Q8).58C2 = Q8×C42 | φ: trivial image | 128 | | (C2xC4xQ8).58C2 | 128,1004 |
(C2×C4×Q8).59C2 = Q8×C2×C8 | φ: trivial image | 128 | | (C2xC4xQ8).59C2 | 128,1690 |