Copied to
clipboard

G = Q85M4(2)  order 128 = 27

3rd semidirect product of Q8 and M4(2) acting via M4(2)/C2×C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q85M4(2), C42.51D4, C42.612C23, Q8⋊C833C2, (C4×Q8).18C4, C22.22C4≀C2, C42.65(C2×C4), C4⋊C8.196C22, (C4×C8).313C22, (C22×C4).659D4, C4.23(C2×M4(2)), (C22×Q8).21C4, (C4×M4(2)).17C2, (C4×Q8).254C22, C4.128(C8.C22), C42.6C4.15C2, (C2×C42).168C22, C23.172(C22⋊C4), C2.17(C24.4C4), C2.5(C23.38D4), (C2×C4×Q8).6C2, C2.11(C2×C4≀C2), (C2×C4⋊C4).43C4, C4⋊C4.184(C2×C4), (C2×C4).1140(C2×D4), (C2×Q8).178(C2×C4), (C2×C4).81(C22⋊C4), (C2×C4).317(C22×C4), (C22×C4).190(C2×C4), C22.167(C2×C22⋊C4), SmallGroup(128,223)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — Q85M4(2)
C1C2C22C2×C4C42C2×C42C2×C4×Q8 — Q85M4(2)
C1C2C2×C4 — Q85M4(2)
C1C2×C4C2×C42 — Q85M4(2)
C1C22C22C42 — Q85M4(2)

Generators and relations for Q85M4(2)
 G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=a-1, ac=ca, ad=da, cbc-1=a-1b, bd=db, dcd=c5 >

Subgroups: 212 in 126 conjugacy classes, 52 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, Q8, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×Q8, C2×Q8, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C4×Q8, C2×M4(2), C22×Q8, Q8⋊C8, C4×M4(2), C42.6C4, C2×C4×Q8, Q85M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, M4(2), C22×C4, C2×D4, C4≀C2, C2×C22⋊C4, C2×M4(2), C8.C22, C24.4C4, C23.38D4, C2×C4≀C2, Q85M4(2)

Smallest permutation representation of Q85M4(2)
On 64 points
Generators in S64
(1 26 14 49)(2 27 15 50)(3 28 16 51)(4 29 9 52)(5 30 10 53)(6 31 11 54)(7 32 12 55)(8 25 13 56)(17 63 48 36)(18 64 41 37)(19 57 42 38)(20 58 43 39)(21 59 44 40)(22 60 45 33)(23 61 46 34)(24 62 47 35)
(1 35 14 62)(2 17 15 48)(3 64 16 37)(4 42 9 19)(5 39 10 58)(6 21 11 44)(7 60 12 33)(8 46 13 23)(18 51 41 28)(20 30 43 53)(22 55 45 32)(24 26 47 49)(25 61 56 34)(27 36 50 63)(29 57 52 38)(31 40 54 59)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 10)(2 15)(3 12)(4 9)(5 14)(6 11)(7 16)(8 13)(17 48)(18 45)(19 42)(20 47)(21 44)(22 41)(23 46)(24 43)(25 56)(26 53)(27 50)(28 55)(29 52)(30 49)(31 54)(32 51)(33 64)(34 61)(35 58)(36 63)(37 60)(38 57)(39 62)(40 59)

G:=sub<Sym(64)| (1,26,14,49)(2,27,15,50)(3,28,16,51)(4,29,9,52)(5,30,10,53)(6,31,11,54)(7,32,12,55)(8,25,13,56)(17,63,48,36)(18,64,41,37)(19,57,42,38)(20,58,43,39)(21,59,44,40)(22,60,45,33)(23,61,46,34)(24,62,47,35), (1,35,14,62)(2,17,15,48)(3,64,16,37)(4,42,9,19)(5,39,10,58)(6,21,11,44)(7,60,12,33)(8,46,13,23)(18,51,41,28)(20,30,43,53)(22,55,45,32)(24,26,47,49)(25,61,56,34)(27,36,50,63)(29,57,52,38)(31,40,54,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,10)(2,15)(3,12)(4,9)(5,14)(6,11)(7,16)(8,13)(17,48)(18,45)(19,42)(20,47)(21,44)(22,41)(23,46)(24,43)(25,56)(26,53)(27,50)(28,55)(29,52)(30,49)(31,54)(32,51)(33,64)(34,61)(35,58)(36,63)(37,60)(38,57)(39,62)(40,59)>;

G:=Group( (1,26,14,49)(2,27,15,50)(3,28,16,51)(4,29,9,52)(5,30,10,53)(6,31,11,54)(7,32,12,55)(8,25,13,56)(17,63,48,36)(18,64,41,37)(19,57,42,38)(20,58,43,39)(21,59,44,40)(22,60,45,33)(23,61,46,34)(24,62,47,35), (1,35,14,62)(2,17,15,48)(3,64,16,37)(4,42,9,19)(5,39,10,58)(6,21,11,44)(7,60,12,33)(8,46,13,23)(18,51,41,28)(20,30,43,53)(22,55,45,32)(24,26,47,49)(25,61,56,34)(27,36,50,63)(29,57,52,38)(31,40,54,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,10)(2,15)(3,12)(4,9)(5,14)(6,11)(7,16)(8,13)(17,48)(18,45)(19,42)(20,47)(21,44)(22,41)(23,46)(24,43)(25,56)(26,53)(27,50)(28,55)(29,52)(30,49)(31,54)(32,51)(33,64)(34,61)(35,58)(36,63)(37,60)(38,57)(39,62)(40,59) );

G=PermutationGroup([[(1,26,14,49),(2,27,15,50),(3,28,16,51),(4,29,9,52),(5,30,10,53),(6,31,11,54),(7,32,12,55),(8,25,13,56),(17,63,48,36),(18,64,41,37),(19,57,42,38),(20,58,43,39),(21,59,44,40),(22,60,45,33),(23,61,46,34),(24,62,47,35)], [(1,35,14,62),(2,17,15,48),(3,64,16,37),(4,42,9,19),(5,39,10,58),(6,21,11,44),(7,60,12,33),(8,46,13,23),(18,51,41,28),(20,30,43,53),(22,55,45,32),(24,26,47,49),(25,61,56,34),(27,36,50,63),(29,57,52,38),(31,40,54,59)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,10),(2,15),(3,12),(4,9),(5,14),(6,11),(7,16),(8,13),(17,48),(18,45),(19,42),(20,47),(21,44),(22,41),(23,46),(24,43),(25,56),(26,53),(27,50),(28,55),(29,52),(30,49),(31,54),(32,51),(33,64),(34,61),(35,58),(36,63),(37,60),(38,57),(39,62),(40,59)]])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4J4K···4T8A···8H8I8J8K8L
order12222244444···44···48···88888
size11112211112···24···44···48888

38 irreducible representations

dim1111111122224
type+++++++-
imageC1C2C2C2C2C4C4C4D4D4M4(2)C4≀C2C8.C22
kernelQ85M4(2)Q8⋊C8C4×M4(2)C42.6C4C2×C4×Q8C2×C4⋊C4C4×Q8C22×Q8C42C22×C4Q8C22C4
# reps1411124222882

Matrix representation of Q85M4(2) in GL4(𝔽17) generated by

16200
16100
0010
0001
,
0700
12000
0010
0001
,
51200
11000
00815
00139
,
16000
01600
00160
0091
G:=sub<GL(4,GF(17))| [16,16,0,0,2,1,0,0,0,0,1,0,0,0,0,1],[0,12,0,0,7,0,0,0,0,0,1,0,0,0,0,1],[5,11,0,0,12,0,0,0,0,0,8,13,0,0,15,9],[16,0,0,0,0,16,0,0,0,0,16,9,0,0,0,1] >;

Q85M4(2) in GAP, Magma, Sage, TeX

Q_8\rtimes_5M_4(2)
% in TeX

G:=Group("Q8:5M4(2)");
// GroupNames label

G:=SmallGroup(128,223);
// by ID

G=gap.SmallGroup(128,223);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,1430,387,184,1123,570,136,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽