Extensions 1→N→G→Q→1 with N=C4×C4○D4 and Q=C2

Direct product G=N×Q with N=C4×C4○D4 and Q=C2
dρLabelID
C2×C4×C4○D464C2xC4xC4oD4128,2156

Semidirect products G=N:Q with N=C4×C4○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C4○D4)⋊1C2 = C42.426D4φ: C2/C1C2 ⊆ Out C4×C4○D4164(C4xC4oD4):1C2128,638
(C4×C4○D4)⋊2C2 = 2- 1+45C4φ: C2/C1C2 ⊆ Out C4×C4○D4164(C4xC4oD4):2C2128,1633
(C4×C4○D4)⋊3C2 = C4×C4○D8φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):3C2128,1671
(C4×C4○D4)⋊4C2 = C42.383D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):4C2128,1675
(C4×C4○D4)⋊5C2 = C4×C8⋊C22φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):5C2128,1676
(C4×C4○D4)⋊6C2 = C42.443D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):6C2128,1767
(C4×C4○D4)⋊7C2 = C42.444D4φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):7C2128,1770
(C4×C4○D4)⋊8C2 = C42.446D4φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):8C2128,1772
(C4×C4○D4)⋊9C2 = C42.384D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):9C2128,1834
(C4×C4○D4)⋊10C2 = C42.450D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):10C2128,1838
(C4×C4○D4)⋊11C2 = C42.229D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):11C2128,1843
(C4×C4○D4)⋊12C2 = C42.233D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):12C2128,1847
(C4×C4○D4)⋊13C2 = C22.14C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):13C2128,2160
(C4×C4○D4)⋊14C2 = C4×2+ 1+4φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):14C2128,2161
(C4×C4○D4)⋊15C2 = C4×2- 1+4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):15C2128,2162
(C4×C4○D4)⋊16C2 = C22.33C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):16C2128,2176
(C4×C4○D4)⋊17C2 = C22.44C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):17C2128,2187
(C4×C4○D4)⋊18C2 = C22.49C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):18C2128,2192
(C4×C4○D4)⋊19C2 = C22.50C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):19C2128,2193
(C4×C4○D4)⋊20C2 = D4×C4○D4φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):20C2128,2200
(C4×C4○D4)⋊21C2 = C22.64C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):21C2128,2207
(C4×C4○D4)⋊22C2 = C22.69C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):22C2128,2212
(C4×C4○D4)⋊23C2 = C22.70C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):23C2128,2213
(C4×C4○D4)⋊24C2 = C22.71C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):24C2128,2214
(C4×C4○D4)⋊25C2 = C22.72C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):25C2128,2215
(C4×C4○D4)⋊26C2 = C22.87C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):26C2128,2230
(C4×C4○D4)⋊27C2 = C22.88C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):27C2128,2231
(C4×C4○D4)⋊28C2 = C22.89C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):28C2128,2232
(C4×C4○D4)⋊29C2 = C22.97C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):29C2128,2240
(C4×C4○D4)⋊30C2 = C22.99C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):30C2128,2242
(C4×C4○D4)⋊31C2 = C22.100C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):31C2128,2243
(C4×C4○D4)⋊32C2 = C22.101C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):32C2128,2244
(C4×C4○D4)⋊33C2 = C22.103C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):33C2128,2246
(C4×C4○D4)⋊34C2 = C22.104C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):34C2128,2247
(C4×C4○D4)⋊35C2 = C22.106C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):35C2128,2249
(C4×C4○D4)⋊36C2 = C22.107C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):36C2128,2250
(C4×C4○D4)⋊37C2 = C22.110C25φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4):37C2128,2253
(C4×C4○D4)⋊38C2 = C22.113C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4):38C2128,2256

Non-split extensions G=N.Q with N=C4×C4○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C4○D4).1C2 = C42.455D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).1C2128,208
(C4×C4○D4).2C2 = C42.397D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).2C2128,209
(C4×C4○D4).3C2 = C42.374D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).3C2128,220
(C4×C4○D4).4C2 = D44M4(2)φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).4C2128,221
(C4×C4○D4).5C2 = C4×C4≀C2φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4).5C2128,490
(C4×C4○D4).6C2 = D4.C42φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4).6C2128,491
(C4×C4○D4).7C2 = C42.102D4φ: C2/C1C2 ⊆ Out C4×C4○D432(C4xC4oD4).7C2128,538
(C4×C4○D4).8C2 = (C2×C42)⋊C4φ: C2/C1C2 ⊆ Out C4×C4○D4164(C4xC4oD4).8C2128,559
(C4×C4○D4).9C2 = D4.5C42φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).9C2128,1607
(C4×C4○D4).10C2 = C42.674C23φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).10C2128,1638
(C4×C4○D4).11C2 = C42.260C23φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).11C2128,1654
(C4×C4○D4).12C2 = C42.261C23φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).12C2128,1655
(C4×C4○D4).13C2 = C42.678C23φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).13C2128,1657
(C4×C4○D4).14C2 = C4×C8.C22φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).14C2128,1677
(C4×C4○D4).15C2 = C42.290C23φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).15C2128,1697
(C4×C4○D4).16C2 = D46M4(2)φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).16C2128,1702
(C4×C4○D4).17C2 = Q86M4(2)φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).17C2128,1703
(C4×C4○D4).18C2 = C42.697C23φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).18C2128,1720
(C4×C4○D4).19C2 = C42.698C23φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).19C2128,1721
(C4×C4○D4).20C2 = D48M4(2)φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).20C2128,1722
(C4×C4○D4).21C2 = Q87M4(2)φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).21C2128,1723
(C4×C4○D4).22C2 = C42.445D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).22C2128,1771
(C4×C4○D4).23C2 = C42.447D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).23C2128,1808
(C4×C4○D4).24C2 = C42.448D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).24C2128,1811
(C4×C4○D4).25C2 = C42.449D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).25C2128,1812
(C4×C4○D4).26C2 = C42.451D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).26C2128,1839
(C4×C4○D4).27C2 = C42.234D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).27C2128,1848
(C4×C4○D4).28C2 = Q8×C4○D4φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).28C2128,2210
(C4×C4○D4).29C2 = C22.92C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).29C2128,2235
(C4×C4○D4).30C2 = C22.93C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).30C2128,2236
(C4×C4○D4).31C2 = C22.98C25φ: C2/C1C2 ⊆ Out C4×C4○D464(C4xC4oD4).31C2128,2241
(C4×C4○D4).32C2 = C4×C8○D4φ: trivial image64(C4xC4oD4).32C2128,1606
(C4×C4○D4).33C2 = C8×C4○D4φ: trivial image64(C4xC4oD4).33C2128,1696

׿
×
𝔽