extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C4○D4)⋊1C2 = C42.426D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 16 | 4 | (C4xC4oD4):1C2 | 128,638 |
(C4×C4○D4)⋊2C2 = 2- 1+4⋊5C4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 16 | 4 | (C4xC4oD4):2C2 | 128,1633 |
(C4×C4○D4)⋊3C2 = C4×C4○D8 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):3C2 | 128,1671 |
(C4×C4○D4)⋊4C2 = C42.383D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):4C2 | 128,1675 |
(C4×C4○D4)⋊5C2 = C4×C8⋊C22 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):5C2 | 128,1676 |
(C4×C4○D4)⋊6C2 = C42.443D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):6C2 | 128,1767 |
(C4×C4○D4)⋊7C2 = C42.444D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):7C2 | 128,1770 |
(C4×C4○D4)⋊8C2 = C42.446D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):8C2 | 128,1772 |
(C4×C4○D4)⋊9C2 = C42.384D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):9C2 | 128,1834 |
(C4×C4○D4)⋊10C2 = C42.450D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):10C2 | 128,1838 |
(C4×C4○D4)⋊11C2 = C42.229D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):11C2 | 128,1843 |
(C4×C4○D4)⋊12C2 = C42.233D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):12C2 | 128,1847 |
(C4×C4○D4)⋊13C2 = C22.14C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):13C2 | 128,2160 |
(C4×C4○D4)⋊14C2 = C4×2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):14C2 | 128,2161 |
(C4×C4○D4)⋊15C2 = C4×2- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):15C2 | 128,2162 |
(C4×C4○D4)⋊16C2 = C22.33C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):16C2 | 128,2176 |
(C4×C4○D4)⋊17C2 = C22.44C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):17C2 | 128,2187 |
(C4×C4○D4)⋊18C2 = C22.49C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):18C2 | 128,2192 |
(C4×C4○D4)⋊19C2 = C22.50C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):19C2 | 128,2193 |
(C4×C4○D4)⋊20C2 = D4×C4○D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):20C2 | 128,2200 |
(C4×C4○D4)⋊21C2 = C22.64C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):21C2 | 128,2207 |
(C4×C4○D4)⋊22C2 = C22.69C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):22C2 | 128,2212 |
(C4×C4○D4)⋊23C2 = C22.70C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):23C2 | 128,2213 |
(C4×C4○D4)⋊24C2 = C22.71C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):24C2 | 128,2214 |
(C4×C4○D4)⋊25C2 = C22.72C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):25C2 | 128,2215 |
(C4×C4○D4)⋊26C2 = C22.87C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):26C2 | 128,2230 |
(C4×C4○D4)⋊27C2 = C22.88C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):27C2 | 128,2231 |
(C4×C4○D4)⋊28C2 = C22.89C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):28C2 | 128,2232 |
(C4×C4○D4)⋊29C2 = C22.97C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):29C2 | 128,2240 |
(C4×C4○D4)⋊30C2 = C22.99C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):30C2 | 128,2242 |
(C4×C4○D4)⋊31C2 = C22.100C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):31C2 | 128,2243 |
(C4×C4○D4)⋊32C2 = C22.101C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):32C2 | 128,2244 |
(C4×C4○D4)⋊33C2 = C22.103C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):33C2 | 128,2246 |
(C4×C4○D4)⋊34C2 = C22.104C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):34C2 | 128,2247 |
(C4×C4○D4)⋊35C2 = C22.106C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):35C2 | 128,2249 |
(C4×C4○D4)⋊36C2 = C22.107C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):36C2 | 128,2250 |
(C4×C4○D4)⋊37C2 = C22.110C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4):37C2 | 128,2253 |
(C4×C4○D4)⋊38C2 = C22.113C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4):38C2 | 128,2256 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C4○D4).1C2 = C42.455D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).1C2 | 128,208 |
(C4×C4○D4).2C2 = C42.397D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).2C2 | 128,209 |
(C4×C4○D4).3C2 = C42.374D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).3C2 | 128,220 |
(C4×C4○D4).4C2 = D4⋊4M4(2) | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).4C2 | 128,221 |
(C4×C4○D4).5C2 = C4×C4≀C2 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4).5C2 | 128,490 |
(C4×C4○D4).6C2 = D4.C42 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4).6C2 | 128,491 |
(C4×C4○D4).7C2 = C42.102D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 32 | | (C4xC4oD4).7C2 | 128,538 |
(C4×C4○D4).8C2 = (C2×C42)⋊C4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 16 | 4 | (C4xC4oD4).8C2 | 128,559 |
(C4×C4○D4).9C2 = D4.5C42 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).9C2 | 128,1607 |
(C4×C4○D4).10C2 = C42.674C23 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).10C2 | 128,1638 |
(C4×C4○D4).11C2 = C42.260C23 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).11C2 | 128,1654 |
(C4×C4○D4).12C2 = C42.261C23 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).12C2 | 128,1655 |
(C4×C4○D4).13C2 = C42.678C23 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).13C2 | 128,1657 |
(C4×C4○D4).14C2 = C4×C8.C22 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).14C2 | 128,1677 |
(C4×C4○D4).15C2 = C42.290C23 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).15C2 | 128,1697 |
(C4×C4○D4).16C2 = D4⋊6M4(2) | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).16C2 | 128,1702 |
(C4×C4○D4).17C2 = Q8⋊6M4(2) | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).17C2 | 128,1703 |
(C4×C4○D4).18C2 = C42.697C23 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).18C2 | 128,1720 |
(C4×C4○D4).19C2 = C42.698C23 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).19C2 | 128,1721 |
(C4×C4○D4).20C2 = D4⋊8M4(2) | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).20C2 | 128,1722 |
(C4×C4○D4).21C2 = Q8⋊7M4(2) | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).21C2 | 128,1723 |
(C4×C4○D4).22C2 = C42.445D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).22C2 | 128,1771 |
(C4×C4○D4).23C2 = C42.447D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).23C2 | 128,1808 |
(C4×C4○D4).24C2 = C42.448D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).24C2 | 128,1811 |
(C4×C4○D4).25C2 = C42.449D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).25C2 | 128,1812 |
(C4×C4○D4).26C2 = C42.451D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).26C2 | 128,1839 |
(C4×C4○D4).27C2 = C42.234D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).27C2 | 128,1848 |
(C4×C4○D4).28C2 = Q8×C4○D4 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).28C2 | 128,2210 |
(C4×C4○D4).29C2 = C22.92C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).29C2 | 128,2235 |
(C4×C4○D4).30C2 = C22.93C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).30C2 | 128,2236 |
(C4×C4○D4).31C2 = C22.98C25 | φ: C2/C1 → C2 ⊆ Out C4×C4○D4 | 64 | | (C4xC4oD4).31C2 | 128,2241 |
(C4×C4○D4).32C2 = C4×C8○D4 | φ: trivial image | 64 | | (C4xC4oD4).32C2 | 128,1606 |
(C4×C4○D4).33C2 = C8×C4○D4 | φ: trivial image | 64 | | (C4xC4oD4).33C2 | 128,1696 |