Copied to
clipboard

G = C4xC4wrC2order 128 = 27

Direct product of C4 and C4wrC2

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4xC4wrC2, C43:6C2, D4:1C42, Q8:1C42, C42.458D4, (C4xD4):9C4, (C4xQ8):9C4, C42:36(C2xC4), C4.161(C4xD4), C4.1(C2xC42), C22.26(C4xD4), C4o2(C42:6C4), C42:6C4:34C2, (C4xM4(2)):21C2, M4(2):12(C2xC4), (C22xC4).670D4, C23.541(C2xD4), C4.1(C42:C2), C42o(C42:6C4), (C2xC42).1045C22, (C22xC4).1305C23, C42:C2.261C22, (C2xM4(2)).306C22, C2.5(C2xC4wrC2), C42o(C2xC4wrC2), (C4xC4oD4).5C2, (C2xC4wrC2).16C2, C4:C4.187(C2xC4), C4oD4.13(C2xC4), C2.16(C4xC22:C4), (C2xD4).196(C2xC4), (C2xC4).1499(C2xD4), (C2xQ8).179(C2xC4), (C2xC4).536(C4oD4), (C2xC4).348(C22xC4), (C2xC4).399(C22:C4), (C2xC4oD4).250C22, C22.117(C2xC22:C4), 2-Sylow(GL(3,5)), SmallGroup(128,490)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C4xC4wrC2
C1C2C22C23C22xC4C2xC42C43 — C4xC4wrC2
C1C2C4 — C4xC4wrC2
C1C42C2xC42 — C4xC4wrC2
C1C2C2C22xC4 — C4xC4wrC2

Generators and relations for C4xC4wrC2
 G = < a,b,c,d | a4=b4=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b-1c >

Subgroups: 300 in 180 conjugacy classes, 80 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C42, C42, C22:C4, C4:C4, C4:C4, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C4xC8, C8:C4, C4wrC2, C2xC42, C2xC42, C2xC42, C42:C2, C42:C2, C4xD4, C4xD4, C4xQ8, C2xM4(2), C2xC4oD4, C42:6C4, C43, C4xM4(2), C2xC4wrC2, C4xC4oD4, C4xC4wrC2
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C42, C22:C4, C22xC4, C2xD4, C4oD4, C4wrC2, C2xC42, C2xC22:C4, C42:C2, C4xD4, C4xC22:C4, C2xC4wrC2, C4xC4wrC2

Smallest permutation representation of C4xC4wrC2
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 8 23 9)(2 5 24 10)(3 6 21 11)(4 7 22 12)(13 32 27 18)(14 29 28 19)(15 30 25 20)(16 31 26 17)
(1 18)(2 19)(3 20)(4 17)(5 28)(6 25)(7 26)(8 27)(9 13)(10 14)(11 15)(12 16)(21 30)(22 31)(23 32)(24 29)
(1 8 23 9)(2 5 24 10)(3 6 21 11)(4 7 22 12)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8,23,9)(2,5,24,10)(3,6,21,11)(4,7,22,12)(13,32,27,18)(14,29,28,19)(15,30,25,20)(16,31,26,17), (1,18)(2,19)(3,20)(4,17)(5,28)(6,25)(7,26)(8,27)(9,13)(10,14)(11,15)(12,16)(21,30)(22,31)(23,32)(24,29), (1,8,23,9)(2,5,24,10)(3,6,21,11)(4,7,22,12)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8,23,9)(2,5,24,10)(3,6,21,11)(4,7,22,12)(13,32,27,18)(14,29,28,19)(15,30,25,20)(16,31,26,17), (1,18)(2,19)(3,20)(4,17)(5,28)(6,25)(7,26)(8,27)(9,13)(10,14)(11,15)(12,16)(21,30)(22,31)(23,32)(24,29), (1,8,23,9)(2,5,24,10)(3,6,21,11)(4,7,22,12)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,8,23,9),(2,5,24,10),(3,6,21,11),(4,7,22,12),(13,32,27,18),(14,29,28,19),(15,30,25,20),(16,31,26,17)], [(1,18),(2,19),(3,20),(4,17),(5,28),(6,25),(7,26),(8,27),(9,13),(10,14),(11,15),(12,16),(21,30),(22,31),(23,32),(24,29)], [(1,8,23,9),(2,5,24,10),(3,6,21,11),(4,7,22,12),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4L4M···4AH4AI···4AN8A···8H
order122222224···44···44···48···8
size111122441···12···24···44···4

56 irreducible representations

dim1111111112222
type++++++++
imageC1C2C2C2C2C2C4C4C4D4D4C4oD4C4wrC2
kernelC4xC4wrC2C42:6C4C43C4xM4(2)C2xC4wrC2C4xC4oD4C4wrC2C4xD4C4xQ8C42C22xC4C2xC4C4
# reps121121164422416

Matrix representation of C4xC4wrC2 in GL3(F17) generated by

400
040
004
,
100
040
0013
,
1600
001
010
,
1600
040
0016
G:=sub<GL(3,GF(17))| [4,0,0,0,4,0,0,0,4],[1,0,0,0,4,0,0,0,13],[16,0,0,0,0,1,0,1,0],[16,0,0,0,4,0,0,0,16] >;

C4xC4wrC2 in GAP, Magma, Sage, TeX

C_4\times C_4\wr C_2
% in TeX

G:=Group("C4xC4wrC2");
// GroupNames label

G:=SmallGroup(128,490);
// by ID

G=gap.SmallGroup(128,490);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,100,2019,248,4037]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^-1*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<