Copied to
clipboard

G = 2+ 1+6order 128 = 27

Extraspecial group

p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: 2+ 1+6, C2.7C26, C4.17C25, C245C23, D42+ 1+4, Q82- 1+4, D4.13C24, C22.3C25, Q8.13C24, C23.99C24, 2- 1+413C22, 2+ 1+414C22, C4○D49C23, (C2×D4)⋊24C23, (C22×C4)⋊6C23, (C2×Q8)⋊25C23, (C2×C4).151C24, C2.C258C2, (C22×D4)⋊52C22, (C2×2+ 1+4)⋊16C2, (C2×C4○D4)⋊61C22, SmallGroup(128,2326)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — 2+ 1+6
C1C2C22C23C24C22×D4C2×2+ 1+4 — 2+ 1+6
C1C2 — 2+ 1+6
C1C2 — 2+ 1+6
C1C2 — 2+ 1+6

Generators and relations for 2+ 1+6
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, cbc=gbg=ab=ba, fcf=ac=ca, ede=ad=da, ae=ea, af=fa, ag=ga, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cg=gc, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >

Subgroups: 3556 in 2996 conjugacy classes, 2826 normal (3 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, D4, Q8, C23, C23, C22×C4, C2×D4, C2×Q8, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×2+ 1+4, C2.C25, 2+ 1+6
Quotients: C1, C2, C22, C23, C24, C25, C26, 2+ 1+6

Permutation representations of 2+ 1+6
On 16 points - transitive group 16T197
Generators in S16
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)
(1 15)(2 16)(3 14)(4 13)(5 11)(6 12)(7 10)(8 9)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 3)(2 4)(5 8)(6 7)(9 11)(10 12)(13 16)(14 15)
(1 3)(2 4)(5 7)(6 8)(9 12)(10 11)(13 16)(14 15)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)

G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,15)(2,16)(3,14)(4,13)(5,11)(6,12)(7,10)(8,9), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,3)(2,4)(5,8)(6,7)(9,11)(10,12)(13,16)(14,15), (1,3)(2,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,15)(2,16)(3,14)(4,13)(5,11)(6,12)(7,10)(8,9), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,3)(2,4)(5,8)(6,7)(9,11)(10,12)(13,16)(14,15), (1,3)(2,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16)], [(1,15),(2,16),(3,14),(4,13),(5,11),(6,12),(7,10),(8,9)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,3),(2,4),(5,8),(6,7),(9,11),(10,12),(13,16),(14,15)], [(1,3),(2,4),(5,7),(6,8),(9,12),(10,11),(13,16),(14,15)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)]])

G:=TransitiveGroup(16,197);

65 conjugacy classes

class 1 2A2B···2AJ4A···4AB
order122···24···4
size112···22···2

65 irreducible representations

dim1118
type++++
imageC1C2C22+ 1+6
kernel2+ 1+6C2×2+ 1+4C2.C25C1
# reps135281

Matrix representation of 2+ 1+6 in GL8(ℤ)

-10000000
0-1000000
00-100000
000-10000
0000-1000
00000-100
000000-10
0000000-1
,
00000001
000000-10
00000100
0000-1000
000-10000
00100000
0-1000000
10000000
,
00001000
00000100
00000010
00000001
10000000
01000000
00100000
00010000
,
01000000
10000000
000-10000
00-100000
00000100
00001000
0000000-1
000000-10
,
00100000
00010000
10000000
01000000
00000010
00000001
00001000
00000100
,
01000000
10000000
00010000
00100000
00000-100
0000-1000
0000000-1
000000-10
,
01000000
10000000
00010000
00100000
00000100
00001000
00000001
00000010

G:=sub<GL(8,Integers())| [-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

2+ 1+6 in GAP, Magma, Sage, TeX

2_+^{1+6}
% in TeX

G:=Group("ES+(2,3)");
// GroupNames label

G:=SmallGroup(128,2326);
// by ID

G=gap.SmallGroup(128,2326);
# by ID

G:=PCGroup([7,-2,2,2,2,2,2,-2,925,521,1411,4037]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,c*b*c=g*b*g=a*b=b*a,f*c*f=a*c=c*a,e*d*e=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*g=g*c,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽