direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C2×2+ 1+4, D4⋊4C23, C2.4C25, Q8⋊4C23, C4.12C24, C23⋊2C23, C24⋊5C22, C22.2C24, D4○(C2×D4), Q8○(C2×Q8), (C2×C4)⋊2C23, C4○D4⋊6C22, (C2×D4)⋊17C22, (C22×D4)⋊12C2, (C2×Q8)⋊20C22, (C22×C4)⋊13C22, (C2×D4)○(C2×D4), (C2×Q8)○(C2×Q8), (C2×C4○D4)⋊13C2, SmallGroup(64,264)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×2+ 1+4
G = < a,b,c,d,e | a2=b4=c2=e2=1, d2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=b2d >
Subgroups: 593 in 449 conjugacy classes, 377 normal (4 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, Q8, C23, C23, C22×C4, C2×D4, C2×Q8, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C2×2+ 1+4
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, C25, C2×2+ 1+4
(1 11)(2 12)(3 9)(4 10)(5 14)(6 15)(7 16)(8 13)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 14)(15 16)
(1 16 3 14)(2 13 4 15)(5 11 7 9)(6 12 8 10)
(1 14)(2 15)(3 16)(4 13)(5 11)(6 12)(7 9)(8 10)
G:=sub<Sym(16)| (1,11)(2,12)(3,9)(4,10)(5,14)(6,15)(7,16)(8,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16), (1,16,3,14)(2,13,4,15)(5,11,7,9)(6,12,8,10), (1,14)(2,15)(3,16)(4,13)(5,11)(6,12)(7,9)(8,10)>;
G:=Group( (1,11)(2,12)(3,9)(4,10)(5,14)(6,15)(7,16)(8,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16), (1,16,3,14)(2,13,4,15)(5,11,7,9)(6,12,8,10), (1,14)(2,15)(3,16)(4,13)(5,11)(6,12)(7,9)(8,10) );
G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,14),(6,15),(7,16),(8,13)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,14),(15,16)], [(1,16,3,14),(2,13,4,15),(5,11,7,9),(6,12,8,10)], [(1,14),(2,15),(3,16),(4,13),(5,11),(6,12),(7,9),(8,10)]])
G:=TransitiveGroup(16,69);
C2×2+ 1+4 is a maximal subgroup of
2+ 1+4⋊2C4 2+ 1+4⋊3C4 C4○D4.D4 C23.C24 M4(2).24C23 2+ 1+4⋊5C4 C4○D4⋊D4 D4.(C2×D4) (C2×D4)⋊21D4 M4(2)⋊C23 C24⋊C23 C22.73C25 C22.74C25 C22.77C25 C4⋊2+ 1+4 C22.87C25 C22.89C25 D8⋊C23 2+ 1+6
C2×2+ 1+4 is a maximal quotient of
C22.48C25 C22.49C25 C2×D42 C2×Q82 C22.70C25 C22.72C25 C22.73C25 C22.77C25 C22.79C25 C22.81C25 C22.83C25 C4⋊2+ 1+4 C22.87C25 C22.90C25 C22.92C25 C22.94C25 C22.95C25 C22.97C25 C22.100C25 C22.102C25 C22.103C25 C22.106C25 C22.108C25 C23.144C24 C22.111C25 C22.118C25 C42⋊C23 C22.122C25 C22.123C25 C22.124C25 C22.125C25 C22.126C25 C22.127C25 C22.128C25 C22.129C25 C22.130C25 C22.131C25 C22.132C25 C22.133C25 C22.134C25 C22.135C25 C22.136C25 C22.137C25 C22.138C25 C22.139C25 C22.140C25 C22.141C25 C22.143C25 C22.147C25 C22.148C25 C22.149C25 C22.150C25 C22.151C25
34 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | ··· | 2U | 4A | ··· | 4L |
| order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
| size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
34 irreducible representations
| dim | 1 | 1 | 1 | 1 | 4 |
| type | + | + | + | + | + |
| image | C1 | C2 | C2 | C2 | 2+ 1+4 |
| kernel | C2×2+ 1+4 | C22×D4 | C2×C4○D4 | 2+ 1+4 | C2 |
| # reps | 1 | 9 | 6 | 16 | 2 |
Matrix representation of C2×2+ 1+4 ►in GL5(ℤ)
| -1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | -1 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | -1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| -1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | -1 | 0 |
| 0 | 0 | 0 | 0 | -1 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | -1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | -1 |
| 0 | 0 | 0 | 1 | 0 |
| -1 | 0 | 0 | 0 | 0 |
| 0 | 0 | -1 | 0 | 0 |
| 0 | -1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,Integers())| [-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0],[-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1,0],[-1,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,1,0] >;
C2×2+ 1+4 in GAP, Magma, Sage, TeX
C_2\times 2_+^{1+4} % in TeX
G:=Group("C2xES+(2,2)"); // GroupNames label
G:=SmallGroup(64,264);
// by ID
G=gap.SmallGroup(64,264);
# by ID
G:=PCGroup([6,-2,2,2,2,2,-2,409,332,963]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=e^2=1,d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d>;
// generators/relations