direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C2×2+ 1+4, D4⋊4C23, C2.4C25, Q8⋊4C23, C4.12C24, C23⋊2C23, C24⋊5C22, C22.2C24, D4○(C2×D4), Q8○(C2×Q8), (C2×C4)⋊2C23, C4○D4⋊6C22, (C2×D4)⋊17C22, (C22×D4)⋊12C2, (C2×Q8)⋊20C22, (C22×C4)⋊13C22, (C2×D4)○(C2×D4), (C2×Q8)○(C2×Q8), (C2×C4○D4)⋊13C2, SmallGroup(64,264)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×2+ 1+4
G = < a,b,c,d,e | a2=b4=c2=e2=1, d2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=b2d >
Subgroups: 593 in 449 conjugacy classes, 377 normal (4 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, Q8, C23, C23, C22×C4, C2×D4, C2×Q8, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C2×2+ 1+4
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, C25, C2×2+ 1+4
(1 11)(2 12)(3 9)(4 10)(5 14)(6 15)(7 16)(8 13)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 14)(15 16)
(1 16 3 14)(2 13 4 15)(5 11 7 9)(6 12 8 10)
(1 14)(2 15)(3 16)(4 13)(5 11)(6 12)(7 9)(8 10)
G:=sub<Sym(16)| (1,11)(2,12)(3,9)(4,10)(5,14)(6,15)(7,16)(8,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16), (1,16,3,14)(2,13,4,15)(5,11,7,9)(6,12,8,10), (1,14)(2,15)(3,16)(4,13)(5,11)(6,12)(7,9)(8,10)>;
G:=Group( (1,11)(2,12)(3,9)(4,10)(5,14)(6,15)(7,16)(8,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16), (1,16,3,14)(2,13,4,15)(5,11,7,9)(6,12,8,10), (1,14)(2,15)(3,16)(4,13)(5,11)(6,12)(7,9)(8,10) );
G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,14),(6,15),(7,16),(8,13)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,14),(15,16)], [(1,16,3,14),(2,13,4,15),(5,11,7,9),(6,12,8,10)], [(1,14),(2,15),(3,16),(4,13),(5,11),(6,12),(7,9),(8,10)]])
G:=TransitiveGroup(16,69);
C2×2+ 1+4 is a maximal subgroup of
2+ 1+4⋊2C4 2+ 1+4⋊3C4 C4○D4.D4 C23.C24 M4(2).24C23 2+ 1+4⋊5C4 C4○D4⋊D4 D4.(C2×D4) (C2×D4)⋊21D4 M4(2)⋊C23 C24⋊C23 C22.73C25 C22.74C25 C22.77C25 C4⋊2+ 1+4 C22.87C25 C22.89C25 D8⋊C23 2+ 1+6
C2×2+ 1+4 is a maximal quotient of
C22.48C25 C22.49C25 C2×D42 C2×Q82 C22.70C25 C22.72C25 C22.73C25 C22.77C25 C22.79C25 C22.81C25 C22.83C25 C4⋊2+ 1+4 C22.87C25 C22.90C25 C22.92C25 C22.94C25 C22.95C25 C22.97C25 C22.100C25 C22.102C25 C22.103C25 C22.106C25 C22.108C25 C23.144C24 C22.111C25 C22.118C25 C42⋊C23 C22.122C25 C22.123C25 C22.124C25 C22.125C25 C22.126C25 C22.127C25 C22.128C25 C22.129C25 C22.130C25 C22.131C25 C22.132C25 C22.133C25 C22.134C25 C22.135C25 C22.136C25 C22.137C25 C22.138C25 C22.139C25 C22.140C25 C22.141C25 C22.143C25 C22.147C25 C22.148C25 C22.149C25 C22.150C25 C22.151C25
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2U | 4A | ··· | 4L |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | 2+ 1+4 |
kernel | C2×2+ 1+4 | C22×D4 | C2×C4○D4 | 2+ 1+4 | C2 |
# reps | 1 | 9 | 6 | 16 | 2 |
Matrix representation of C2×2+ 1+4 ►in GL5(ℤ)
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,Integers())| [-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0],[-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1,0],[-1,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,1,0] >;
C2×2+ 1+4 in GAP, Magma, Sage, TeX
C_2\times 2_+^{1+4}
% in TeX
G:=Group("C2xES+(2,2)");
// GroupNames label
G:=SmallGroup(64,264);
// by ID
G=gap.SmallGroup(64,264);
# by ID
G:=PCGroup([6,-2,2,2,2,2,-2,409,332,963]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=e^2=1,d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d>;
// generators/relations