p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q16⋊4Q8, C42.68C23, C4.1022- 1+4, Q82.5C2, C8⋊Q8.2C2, C8.7(C2×Q8), C2.45(D4×Q8), C4⋊C4.390D4, Q8.12(C2×Q8), C8⋊4Q8.6C2, C8⋊3Q8.3C2, Q8.Q8.3C2, Q8⋊Q8.2C2, (C4×Q16).17C2, (C2×Q8).251D4, Q8⋊3Q8.7C2, C4.45(C22×Q8), C4⋊C8.146C22, C4⋊C4.276C23, (C4×C8).203C22, (C2×C4).579C24, (C2×C8).376C23, Q16⋊C4.2C2, C4.Q16.11C2, C4⋊Q8.208C22, C8⋊C4.72C22, C4.82(C8.C22), (C2×Q8).413C23, (C4×Q8).206C22, C4.Q8.119C22, C2.D8.140C22, C2.109(D4○SD16), Q8⋊C4.92C22, (C2×Q16).164C22, C22.839(C22×D4), C42.C2.77C22, (C2×C4).649(C2×D4), C2.91(C2×C8.C22), SmallGroup(128,2119)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q16⋊4Q8
G = < a,b,c,d | a8=c4=1, b2=a4, d2=c2, bab-1=a-1, ac=ca, dad-1=a5, bc=cb, dbd-1=a4b, dcd-1=c-1 >
Subgroups: 264 in 163 conjugacy classes, 96 normal (38 characteristic)
C1, C2, C4, C4, C4, C22, C8, C8, C2×C4, C2×C4, C2×C4, Q8, Q8, C42, C42, C42, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C8⋊C4, Q8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C2.D8, C4×Q8, C4×Q8, C4×Q8, C42.C2, C42.C2, C4⋊Q8, C4⋊Q8, C4⋊Q8, C2×Q16, C4×Q16, Q16⋊C4, C8⋊4Q8, Q8⋊Q8, Q8⋊Q8, C4.Q16, Q8.Q8, C8⋊3Q8, C8⋊Q8, Q8⋊3Q8, Q82, Q16⋊4Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C24, C8.C22, C22×D4, C22×Q8, 2- 1+4, D4×Q8, C2×C8.C22, D4○SD16, Q16⋊4Q8
Character table of Q16⋊4Q8
| class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | 4S | 8A | 8B | 8C | 8D | 8E | 8F | |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
| ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
| ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
| ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
| ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
| ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
| ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
| ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
| ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
| ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
| ρ10 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
| ρ11 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
| ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
| ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
| ρ14 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
| ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
| ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
| ρ17 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
| ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
| ρ19 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
| ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
| ρ21 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
| ρ22 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
| ρ23 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
| ρ24 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
| ρ25 | 4 | -4 | -4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
| ρ26 | 4 | -4 | 4 | -4 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
| ρ27 | 4 | -4 | -4 | 4 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
| ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | -2√-2 | 0 | 0 | complex lifted from D4○SD16 |
| ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 2√-2 | 0 | 0 | complex lifted from D4○SD16 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 55 5 51)(2 54 6 50)(3 53 7 49)(4 52 8 56)(9 118 13 114)(10 117 14 113)(11 116 15 120)(12 115 16 119)(17 107 21 111)(18 106 22 110)(19 105 23 109)(20 112 24 108)(25 103 29 99)(26 102 30 98)(27 101 31 97)(28 100 32 104)(33 75 37 79)(34 74 38 78)(35 73 39 77)(36 80 40 76)(41 58 45 62)(42 57 46 61)(43 64 47 60)(44 63 48 59)(65 127 69 123)(66 126 70 122)(67 125 71 121)(68 124 72 128)(81 95 85 91)(82 94 86 90)(83 93 87 89)(84 92 88 96)
(1 29 42 107)(2 30 43 108)(3 31 44 109)(4 32 45 110)(5 25 46 111)(6 26 47 112)(7 27 48 105)(8 28 41 106)(9 79 124 95)(10 80 125 96)(11 73 126 89)(12 74 127 90)(13 75 128 91)(14 76 121 92)(15 77 122 93)(16 78 123 94)(17 51 103 61)(18 52 104 62)(19 53 97 63)(20 54 98 64)(21 55 99 57)(22 56 100 58)(23 49 101 59)(24 50 102 60)(33 72 85 118)(34 65 86 119)(35 66 87 120)(36 67 88 113)(37 68 81 114)(38 69 82 115)(39 70 83 116)(40 71 84 117)
(1 74 42 90)(2 79 43 95)(3 76 44 92)(4 73 45 89)(5 78 46 94)(6 75 47 91)(7 80 48 96)(8 77 41 93)(9 108 124 30)(10 105 125 27)(11 110 126 32)(12 107 127 29)(13 112 128 26)(14 109 121 31)(15 106 122 28)(16 111 123 25)(17 69 103 115)(18 66 104 120)(19 71 97 117)(20 68 98 114)(21 65 99 119)(22 70 100 116)(23 67 101 113)(24 72 102 118)(33 60 85 50)(34 57 86 55)(35 62 87 52)(36 59 88 49)(37 64 81 54)(38 61 82 51)(39 58 83 56)(40 63 84 53)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,55,5,51)(2,54,6,50)(3,53,7,49)(4,52,8,56)(9,118,13,114)(10,117,14,113)(11,116,15,120)(12,115,16,119)(17,107,21,111)(18,106,22,110)(19,105,23,109)(20,112,24,108)(25,103,29,99)(26,102,30,98)(27,101,31,97)(28,100,32,104)(33,75,37,79)(34,74,38,78)(35,73,39,77)(36,80,40,76)(41,58,45,62)(42,57,46,61)(43,64,47,60)(44,63,48,59)(65,127,69,123)(66,126,70,122)(67,125,71,121)(68,124,72,128)(81,95,85,91)(82,94,86,90)(83,93,87,89)(84,92,88,96), (1,29,42,107)(2,30,43,108)(3,31,44,109)(4,32,45,110)(5,25,46,111)(6,26,47,112)(7,27,48,105)(8,28,41,106)(9,79,124,95)(10,80,125,96)(11,73,126,89)(12,74,127,90)(13,75,128,91)(14,76,121,92)(15,77,122,93)(16,78,123,94)(17,51,103,61)(18,52,104,62)(19,53,97,63)(20,54,98,64)(21,55,99,57)(22,56,100,58)(23,49,101,59)(24,50,102,60)(33,72,85,118)(34,65,86,119)(35,66,87,120)(36,67,88,113)(37,68,81,114)(38,69,82,115)(39,70,83,116)(40,71,84,117), (1,74,42,90)(2,79,43,95)(3,76,44,92)(4,73,45,89)(5,78,46,94)(6,75,47,91)(7,80,48,96)(8,77,41,93)(9,108,124,30)(10,105,125,27)(11,110,126,32)(12,107,127,29)(13,112,128,26)(14,109,121,31)(15,106,122,28)(16,111,123,25)(17,69,103,115)(18,66,104,120)(19,71,97,117)(20,68,98,114)(21,65,99,119)(22,70,100,116)(23,67,101,113)(24,72,102,118)(33,60,85,50)(34,57,86,55)(35,62,87,52)(36,59,88,49)(37,64,81,54)(38,61,82,51)(39,58,83,56)(40,63,84,53)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,55,5,51)(2,54,6,50)(3,53,7,49)(4,52,8,56)(9,118,13,114)(10,117,14,113)(11,116,15,120)(12,115,16,119)(17,107,21,111)(18,106,22,110)(19,105,23,109)(20,112,24,108)(25,103,29,99)(26,102,30,98)(27,101,31,97)(28,100,32,104)(33,75,37,79)(34,74,38,78)(35,73,39,77)(36,80,40,76)(41,58,45,62)(42,57,46,61)(43,64,47,60)(44,63,48,59)(65,127,69,123)(66,126,70,122)(67,125,71,121)(68,124,72,128)(81,95,85,91)(82,94,86,90)(83,93,87,89)(84,92,88,96), (1,29,42,107)(2,30,43,108)(3,31,44,109)(4,32,45,110)(5,25,46,111)(6,26,47,112)(7,27,48,105)(8,28,41,106)(9,79,124,95)(10,80,125,96)(11,73,126,89)(12,74,127,90)(13,75,128,91)(14,76,121,92)(15,77,122,93)(16,78,123,94)(17,51,103,61)(18,52,104,62)(19,53,97,63)(20,54,98,64)(21,55,99,57)(22,56,100,58)(23,49,101,59)(24,50,102,60)(33,72,85,118)(34,65,86,119)(35,66,87,120)(36,67,88,113)(37,68,81,114)(38,69,82,115)(39,70,83,116)(40,71,84,117), (1,74,42,90)(2,79,43,95)(3,76,44,92)(4,73,45,89)(5,78,46,94)(6,75,47,91)(7,80,48,96)(8,77,41,93)(9,108,124,30)(10,105,125,27)(11,110,126,32)(12,107,127,29)(13,112,128,26)(14,109,121,31)(15,106,122,28)(16,111,123,25)(17,69,103,115)(18,66,104,120)(19,71,97,117)(20,68,98,114)(21,65,99,119)(22,70,100,116)(23,67,101,113)(24,72,102,118)(33,60,85,50)(34,57,86,55)(35,62,87,52)(36,59,88,49)(37,64,81,54)(38,61,82,51)(39,58,83,56)(40,63,84,53) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,55,5,51),(2,54,6,50),(3,53,7,49),(4,52,8,56),(9,118,13,114),(10,117,14,113),(11,116,15,120),(12,115,16,119),(17,107,21,111),(18,106,22,110),(19,105,23,109),(20,112,24,108),(25,103,29,99),(26,102,30,98),(27,101,31,97),(28,100,32,104),(33,75,37,79),(34,74,38,78),(35,73,39,77),(36,80,40,76),(41,58,45,62),(42,57,46,61),(43,64,47,60),(44,63,48,59),(65,127,69,123),(66,126,70,122),(67,125,71,121),(68,124,72,128),(81,95,85,91),(82,94,86,90),(83,93,87,89),(84,92,88,96)], [(1,29,42,107),(2,30,43,108),(3,31,44,109),(4,32,45,110),(5,25,46,111),(6,26,47,112),(7,27,48,105),(8,28,41,106),(9,79,124,95),(10,80,125,96),(11,73,126,89),(12,74,127,90),(13,75,128,91),(14,76,121,92),(15,77,122,93),(16,78,123,94),(17,51,103,61),(18,52,104,62),(19,53,97,63),(20,54,98,64),(21,55,99,57),(22,56,100,58),(23,49,101,59),(24,50,102,60),(33,72,85,118),(34,65,86,119),(35,66,87,120),(36,67,88,113),(37,68,81,114),(38,69,82,115),(39,70,83,116),(40,71,84,117)], [(1,74,42,90),(2,79,43,95),(3,76,44,92),(4,73,45,89),(5,78,46,94),(6,75,47,91),(7,80,48,96),(8,77,41,93),(9,108,124,30),(10,105,125,27),(11,110,126,32),(12,107,127,29),(13,112,128,26),(14,109,121,31),(15,106,122,28),(16,111,123,25),(17,69,103,115),(18,66,104,120),(19,71,97,117),(20,68,98,114),(21,65,99,119),(22,70,100,116),(23,67,101,113),(24,72,102,118),(33,60,85,50),(34,57,86,55),(35,62,87,52),(36,59,88,49),(37,64,81,54),(38,61,82,51),(39,58,83,56),(40,63,84,53)]])
Matrix representation of Q16⋊4Q8 ►in GL6(𝔽17)
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 12 | 5 | 0 | 10 |
| 0 | 0 | 5 | 12 | 10 | 7 |
| 0 | 0 | 12 | 5 | 0 | 0 |
| 0 | 0 | 12 | 10 | 12 | 10 |
| 16 | 0 | 0 | 0 | 0 | 0 |
| 0 | 16 | 0 | 0 | 0 | 0 |
| 0 | 0 | 5 | 11 | 3 | 4 |
| 0 | 0 | 4 | 15 | 10 | 10 |
| 0 | 0 | 4 | 10 | 16 | 16 |
| 0 | 0 | 5 | 14 | 12 | 15 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 16 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 16 | 1 | 15 |
| 0 | 0 | 16 | 0 | 0 | 0 |
| 0 | 0 | 16 | 1 | 0 | 1 |
| 4 | 0 | 0 | 0 | 0 | 0 |
| 0 | 13 | 0 | 0 | 0 | 0 |
| 0 | 0 | 3 | 4 | 8 | 12 |
| 0 | 0 | 16 | 12 | 3 | 6 |
| 0 | 0 | 16 | 9 | 10 | 13 |
| 0 | 0 | 3 | 6 | 13 | 9 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,5,12,12,0,0,5,12,5,10,0,0,0,10,0,12,0,0,10,7,0,10],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,5,4,4,5,0,0,11,15,10,14,0,0,3,10,16,12,0,0,4,10,16,15],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,16,16,0,0,0,16,0,1,0,0,1,1,0,0,0,0,0,15,0,1],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,3,16,16,3,0,0,4,12,9,6,0,0,8,3,10,13,0,0,12,6,13,9] >;
Q16⋊4Q8 in GAP, Magma, Sage, TeX
Q_{16}\rtimes_4Q_8 % in TeX
G:=Group("Q16:4Q8"); // GroupNames label
G:=SmallGroup(128,2119);
// by ID
G=gap.SmallGroup(128,2119);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,560,253,120,758,723,352,346,80,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=c^4=1,b^2=a^4,d^2=c^2,b*a*b^-1=a^-1,a*c=c*a,d*a*d^-1=a^5,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=c^-1>;
// generators/relations
Export