extension | φ:Q→Aut N | d | ρ | Label | ID |
C8⋊1(C2×Q8) = M4(2)⋊5Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 64 | | C8:1(C2xQ8) | 128,1897 |
C8⋊2(C2×Q8) = D8⋊4Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 64 | | C8:2(C2xQ8) | 128,2116 |
C8⋊3(C2×Q8) = SD16⋊2Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 64 | | C8:3(C2xQ8) | 128,2118 |
C8⋊4(C2×Q8) = C2×C8⋊Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C8 | 128 | | C8:4(C2xQ8) | 128,1893 |
C8⋊5(C2×Q8) = C2×C8⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8:5(C2xQ8) | 128,1891 |
C8⋊6(C2×Q8) = C2×C8⋊3Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8:6(C2xQ8) | 128,1889 |
C8⋊7(C2×Q8) = C2×C8⋊4Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8:7(C2xQ8) | 128,1691 |
C8⋊8(C2×Q8) = Q8×D8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 64 | | C8:8(C2xQ8) | 128,2110 |
C8⋊9(C2×Q8) = Q8×SD16 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 64 | | C8:9(C2xQ8) | 128,2111 |
C8⋊10(C2×Q8) = Q8×M4(2) | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 64 | | C8:10(C2xQ8) | 128,1695 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C8.1(C2×Q8) = D8⋊3Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 16 | 4 | C8.1(C2xQ8) | 128,962 |
C8.2(C2×Q8) = D8.2Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 32 | 4 | C8.2(C2xQ8) | 128,963 |
C8.3(C2×Q8) = M4(2)⋊3Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 64 | | C8.3(C2xQ8) | 128,1895 |
C8.4(C2×Q8) = M4(2)⋊4Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 64 | | C8.4(C2xQ8) | 128,1896 |
C8.5(C2×Q8) = M4(2)⋊6Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 64 | | C8.5(C2xQ8) | 128,1898 |
C8.6(C2×Q8) = SD16⋊Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 64 | | C8.6(C2xQ8) | 128,2117 |
C8.7(C2×Q8) = Q16⋊4Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 128 | | C8.7(C2xQ8) | 128,2119 |
C8.8(C2×Q8) = SD16⋊3Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 64 | | C8.8(C2xQ8) | 128,2120 |
C8.9(C2×Q8) = D8⋊5Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 64 | | C8.9(C2xQ8) | 128,2121 |
C8.10(C2×Q8) = Q16⋊5Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C8 | 128 | | C8.10(C2xQ8) | 128,2122 |
C8.11(C2×Q8) = C2×C8.Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C8 | 32 | | C8.11(C2xQ8) | 128,886 |
C8.12(C2×Q8) = M5(2)⋊3C4 | φ: C2×Q8/C22 → C22 ⊆ Aut C8 | 32 | 4 | C8.12(C2xQ8) | 128,887 |
C8.13(C2×Q8) = C42.252D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C8 | 64 | | C8.13(C2xQ8) | 128,1894 |
C8.14(C2×Q8) = C2×C16⋊3C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.14(C2xQ8) | 128,888 |
C8.15(C2×Q8) = C2×C16⋊4C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.15(C2xQ8) | 128,889 |
C8.16(C2×Q8) = C23.25D8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.16(C2xQ8) | 128,890 |
C8.17(C2×Q8) = M5(2)⋊1C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.17(C2xQ8) | 128,891 |
C8.18(C2×Q8) = C16⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.18(C2xQ8) | 128,984 |
C8.19(C2×Q8) = C16.5Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.19(C2xQ8) | 128,985 |
C8.20(C2×Q8) = C16⋊3Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.20(C2xQ8) | 128,986 |
C8.21(C2×Q8) = C16⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.21(C2xQ8) | 128,987 |
C8.22(C2×Q8) = C2×C8.5Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 128 | | C8.22(C2xQ8) | 128,1890 |
C8.23(C2×Q8) = C42.364D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.23(C2xQ8) | 128,1892 |
C8.24(C2×Q8) = C2×C8.4Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.24(C2xQ8) | 128,892 |
C8.25(C2×Q8) = M5(2).1C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 32 | 4 | C8.25(C2xQ8) | 128,893 |
C8.26(C2×Q8) = C2×C8.C8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 32 | | C8.26(C2xQ8) | 128,884 |
C8.27(C2×Q8) = M4(2).1C8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 32 | 4 | C8.27(C2xQ8) | 128,885 |
C8.28(C2×Q8) = C42.287C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C8 | 64 | | C8.28(C2xQ8) | 128,1693 |
C8.29(C2×Q8) = D8⋊1Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 64 | | C8.29(C2xQ8) | 128,956 |
C8.30(C2×Q8) = Q16⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 128 | | C8.30(C2xQ8) | 128,957 |
C8.31(C2×Q8) = D8⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 64 | | C8.31(C2xQ8) | 128,958 |
C8.32(C2×Q8) = C4.Q32 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 128 | | C8.32(C2xQ8) | 128,959 |
C8.33(C2×Q8) = D8.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 64 | | C8.33(C2xQ8) | 128,960 |
C8.34(C2×Q8) = Q16.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 128 | | C8.34(C2xQ8) | 128,961 |
C8.35(C2×Q8) = D8⋊6Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 64 | | C8.35(C2xQ8) | 128,2112 |
C8.36(C2×Q8) = Q8×Q16 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 128 | | C8.36(C2xQ8) | 128,2114 |
C8.37(C2×Q8) = Q16⋊6Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 128 | | C8.37(C2xQ8) | 128,2115 |
C8.38(C2×Q8) = SD16⋊4Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 64 | | C8.38(C2xQ8) | 128,2113 |
C8.39(C2×Q8) = M4(2)⋊9Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C8 | 64 | | C8.39(C2xQ8) | 128,1694 |
C8.40(C2×Q8) = C2×C4⋊C16 | central extension (φ=1) | 128 | | C8.40(C2xQ8) | 128,881 |
C8.41(C2×Q8) = C4⋊M5(2) | central extension (φ=1) | 64 | | C8.41(C2xQ8) | 128,882 |
C8.42(C2×Q8) = C4⋊C4.7C8 | central extension (φ=1) | 64 | | C8.42(C2xQ8) | 128,883 |
C8.43(C2×Q8) = Q8×C16 | central extension (φ=1) | 128 | | C8.43(C2xQ8) | 128,914 |
C8.44(C2×Q8) = C16⋊4Q8 | central extension (φ=1) | 128 | | C8.44(C2xQ8) | 128,915 |
C8.45(C2×Q8) = C42.286C23 | central extension (φ=1) | 64 | | C8.45(C2xQ8) | 128,1692 |