direct product, cyclic, abelian, monomial
Aliases: C143, also denoted Z143, SmallGroup(143,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C143 |
C1 — C143 |
C1 — C143 |
Generators and relations for C143
G = < a | a143=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143)
G:=sub<Sym(143)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143)]])
C143 is a maximal subgroup of
D143
143 conjugacy classes
class | 1 | 11A | ··· | 11J | 13A | ··· | 13L | 143A | ··· | 143DP |
order | 1 | 11 | ··· | 11 | 13 | ··· | 13 | 143 | ··· | 143 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
143 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | |||
image | C1 | C11 | C13 | C143 |
kernel | C143 | C13 | C11 | C1 |
# reps | 1 | 10 | 12 | 120 |
Matrix representation of C143 ►in GL1(𝔽859) generated by
406 |
G:=sub<GL(1,GF(859))| [406] >;
C143 in GAP, Magma, Sage, TeX
C_{143}
% in TeX
G:=Group("C143");
// GroupNames label
G:=SmallGroup(143,1);
// by ID
G=gap.SmallGroup(143,1);
# by ID
G:=PCGroup([2,-11,-13]);
// Polycyclic
G:=Group<a|a^143=1>;
// generators/relations
Export