metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D143, C13⋊D11, C11⋊D13, C143⋊1C2, sometimes denoted D286 or Dih143 or Dih286, SmallGroup(286,3)
Series: Derived ►Chief ►Lower central ►Upper central
C143 — D143 |
Generators and relations for D143
G = < a,b | a143=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143)
(1 143)(2 142)(3 141)(4 140)(5 139)(6 138)(7 137)(8 136)(9 135)(10 134)(11 133)(12 132)(13 131)(14 130)(15 129)(16 128)(17 127)(18 126)(19 125)(20 124)(21 123)(22 122)(23 121)(24 120)(25 119)(26 118)(27 117)(28 116)(29 115)(30 114)(31 113)(32 112)(33 111)(34 110)(35 109)(36 108)(37 107)(38 106)(39 105)(40 104)(41 103)(42 102)(43 101)(44 100)(45 99)(46 98)(47 97)(48 96)(49 95)(50 94)(51 93)(52 92)(53 91)(54 90)(55 89)(56 88)(57 87)(58 86)(59 85)(60 84)(61 83)(62 82)(63 81)(64 80)(65 79)(66 78)(67 77)(68 76)(69 75)(70 74)(71 73)
G:=sub<Sym(143)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143), (1,143)(2,142)(3,141)(4,140)(5,139)(6,138)(7,137)(8,136)(9,135)(10,134)(11,133)(12,132)(13,131)(14,130)(15,129)(16,128)(17,127)(18,126)(19,125)(20,124)(21,123)(22,122)(23,121)(24,120)(25,119)(26,118)(27,117)(28,116)(29,115)(30,114)(31,113)(32,112)(33,111)(34,110)(35,109)(36,108)(37,107)(38,106)(39,105)(40,104)(41,103)(42,102)(43,101)(44,100)(45,99)(46,98)(47,97)(48,96)(49,95)(50,94)(51,93)(52,92)(53,91)(54,90)(55,89)(56,88)(57,87)(58,86)(59,85)(60,84)(61,83)(62,82)(63,81)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143), (1,143)(2,142)(3,141)(4,140)(5,139)(6,138)(7,137)(8,136)(9,135)(10,134)(11,133)(12,132)(13,131)(14,130)(15,129)(16,128)(17,127)(18,126)(19,125)(20,124)(21,123)(22,122)(23,121)(24,120)(25,119)(26,118)(27,117)(28,116)(29,115)(30,114)(31,113)(32,112)(33,111)(34,110)(35,109)(36,108)(37,107)(38,106)(39,105)(40,104)(41,103)(42,102)(43,101)(44,100)(45,99)(46,98)(47,97)(48,96)(49,95)(50,94)(51,93)(52,92)(53,91)(54,90)(55,89)(56,88)(57,87)(58,86)(59,85)(60,84)(61,83)(62,82)(63,81)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143)], [(1,143),(2,142),(3,141),(4,140),(5,139),(6,138),(7,137),(8,136),(9,135),(10,134),(11,133),(12,132),(13,131),(14,130),(15,129),(16,128),(17,127),(18,126),(19,125),(20,124),(21,123),(22,122),(23,121),(24,120),(25,119),(26,118),(27,117),(28,116),(29,115),(30,114),(31,113),(32,112),(33,111),(34,110),(35,109),(36,108),(37,107),(38,106),(39,105),(40,104),(41,103),(42,102),(43,101),(44,100),(45,99),(46,98),(47,97),(48,96),(49,95),(50,94),(51,93),(52,92),(53,91),(54,90),(55,89),(56,88),(57,87),(58,86),(59,85),(60,84),(61,83),(62,82),(63,81),(64,80),(65,79),(66,78),(67,77),(68,76),(69,75),(70,74),(71,73)]])
73 conjugacy classes
class | 1 | 2 | 11A | ··· | 11E | 13A | ··· | 13F | 143A | ··· | 143BH |
order | 1 | 2 | 11 | ··· | 11 | 13 | ··· | 13 | 143 | ··· | 143 |
size | 1 | 143 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
73 irreducible representations
dim | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | D11 | D13 | D143 |
kernel | D143 | C143 | C13 | C11 | C1 |
# reps | 1 | 1 | 5 | 6 | 60 |
Matrix representation of D143 ►in GL2(𝔽859) generated by
276 | 27 |
832 | 209 |
276 | 27 |
392 | 583 |
G:=sub<GL(2,GF(859))| [276,832,27,209],[276,392,27,583] >;
D143 in GAP, Magma, Sage, TeX
D_{143}
% in TeX
G:=Group("D143");
// GroupNames label
G:=SmallGroup(286,3);
// by ID
G=gap.SmallGroup(286,3);
# by ID
G:=PCGroup([3,-2,-11,-13,121,2378]);
// Polycyclic
G:=Group<a,b|a^143=b^2=1,b*a*b=a^-1>;
// generators/relations
Export