Copied to
clipboard

G = C2xS3xA4order 144 = 24·32

Direct product of C2, S3 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C2xS3xA4, C6:(C2xA4), C3:(C22xA4), (C22xC6):C6, (C6xA4):3C2, (S3xC23):C3, (C22xS3):C6, C22:2(S3xC6), C23:2(C3xS3), (C3xA4):4C22, (C2xC6):(C2xC6), SmallGroup(144,190)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C2xS3xA4
C1C3C2xC6C3xA4S3xA4 — C2xS3xA4
C2xC6 — C2xS3xA4
C1C2

Generators and relations for C2xS3xA4
 G = < a,b,c,d,e,f | a2=b3=c2=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 336 in 82 conjugacy classes, 21 normal (15 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, S3, C6, C6, C23, C23, C32, A4, A4, D6, D6, C2xC6, C2xC6, C24, C3xS3, C3xC6, C2xA4, C2xA4, C22xS3, C22xS3, C22xC6, C3xA4, S3xC6, C22xA4, S3xC23, S3xA4, C6xA4, C2xS3xA4
Quotients: C1, C2, C3, C22, S3, C6, A4, D6, C2xC6, C3xS3, C2xA4, S3xC6, C22xA4, S3xA4, C2xS3xA4

Character table of C2xS3xA4

 class 12A2B2C2D2E2F2G3A3B3C3D3E6A6B6C6D6E6F6G6H6I6J6K
 size 1133339924488244668812121212
ρ1111111111111111111111111    trivial
ρ21-11-11-11-111111-1-1-11-1-1-1-1-111    linear of order 2
ρ311-111-1-1-1111111111111-1-1-1-1    linear of order 2
ρ41-1-1-111-1111111-1-1-11-1-1-111-1-1    linear of order 2
ρ51-11-11-11-11ζ3ζ32ζ32ζ3-1ζ6ζ651-1ζ65ζ6ζ6ζ65ζ32ζ3    linear of order 6
ρ6111111111ζ32ζ3ζ3ζ321ζ3ζ3211ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ711-111-1-1-11ζ32ζ3ζ3ζ321ζ3ζ3211ζ32ζ3ζ65ζ6ζ65ζ6    linear of order 6
ρ81-1-1-111-111ζ3ζ32ζ32ζ3-1ζ6ζ651-1ζ65ζ6ζ32ζ3ζ6ζ65    linear of order 6
ρ91-1-1-111-111ζ32ζ3ζ3ζ32-1ζ65ζ61-1ζ6ζ65ζ3ζ32ζ65ζ6    linear of order 6
ρ1011-111-1-1-11ζ3ζ32ζ32ζ31ζ32ζ311ζ3ζ32ζ6ζ65ζ6ζ65    linear of order 6
ρ111-11-11-11-11ζ32ζ3ζ3ζ32-1ζ65ζ61-1ζ6ζ65ζ65ζ6ζ3ζ32    linear of order 6
ρ12111111111ζ3ζ32ζ32ζ31ζ32ζ311ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ132-20-22000-122-1-11-2-2-11110000    orthogonal lifted from D6
ρ1422022000-122-1-1-122-1-1-1-10000    orthogonal lifted from S3
ρ152-20-22000-1-1--3-1+-3ζ65ζ611--31+-3-11ζ32ζ30000    complex lifted from S3xC6
ρ162-20-22000-1-1+-3-1--3ζ6ζ6511+-31--3-11ζ3ζ320000    complex lifted from S3xC6
ρ1722022000-1-1+-3-1--3ζ6ζ65-1-1--3-1+-3-1-1ζ65ζ60000    complex lifted from C3xS3
ρ1822022000-1-1--3-1+-3ζ65ζ6-1-1+-3-1--3-1-1ζ6ζ650000    complex lifted from C3xS3
ρ193-331-1-3-1130000-300-11000000    orthogonal lifted from C2xA4
ρ2033-3-1-1-31130000300-1-1000000    orthogonal lifted from C2xA4
ρ21333-1-13-1-130000300-1-1000000    orthogonal lifted from A4
ρ223-3-31-131-130000-300-11000000    orthogonal lifted from C2xA4
ρ236-602-2000-300003001-1000000    orthogonal faithful
ρ24660-2-2000-30000-30011000000    orthogonal lifted from S3xA4

Permutation representations of C2xS3xA4
On 18 points - transitive group 18T60
Generators in S18
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 4)(2 6)(3 5)(7 10)(8 12)(9 11)(13 16)(14 18)(15 17)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)
(1 4)(2 5)(3 6)(13 16)(14 17)(15 18)
(1 13 7)(2 14 8)(3 15 9)(4 16 10)(5 17 11)(6 18 12)

G:=sub<Sym(18)| (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,4)(2,6)(3,5)(7,10)(8,12)(9,11)(13,16)(14,18)(15,17), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)>;

G:=Group( (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,4)(2,6)(3,5)(7,10)(8,12)(9,11)(13,16)(14,18)(15,17), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12) );

G=PermutationGroup([[(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,4),(2,6),(3,5),(7,10),(8,12),(9,11),(13,16),(14,18),(15,17)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12)], [(1,4),(2,5),(3,6),(13,16),(14,17),(15,18)], [(1,13,7),(2,14,8),(3,15,9),(4,16,10),(5,17,11),(6,18,12)]])

G:=TransitiveGroup(18,60);

On 24 points - transitive group 24T250
Generators in S24
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 13)(2 15)(3 14)(4 16)(5 18)(6 17)(7 19)(8 21)(9 20)(10 22)(11 24)(12 23)
(1 10)(2 11)(3 12)(4 7)(5 8)(6 9)(13 22)(14 23)(15 24)(16 19)(17 20)(18 21)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(4 7 10)(5 8 11)(6 9 12)(16 19 22)(17 20 23)(18 21 24)

G:=sub<Sym(24)| (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,13)(2,15)(3,14)(4,16)(5,18)(6,17)(7,19)(8,21)(9,20)(10,22)(11,24)(12,23), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (4,7,10)(5,8,11)(6,9,12)(16,19,22)(17,20,23)(18,21,24)>;

G:=Group( (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,13)(2,15)(3,14)(4,16)(5,18)(6,17)(7,19)(8,21)(9,20)(10,22)(11,24)(12,23), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (4,7,10)(5,8,11)(6,9,12)(16,19,22)(17,20,23)(18,21,24) );

G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,13),(2,15),(3,14),(4,16),(5,18),(6,17),(7,19),(8,21),(9,20),(10,22),(11,24),(12,23)], [(1,10),(2,11),(3,12),(4,7),(5,8),(6,9),(13,22),(14,23),(15,24),(16,19),(17,20),(18,21)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(4,7,10),(5,8,11),(6,9,12),(16,19,22),(17,20,23),(18,21,24)]])

G:=TransitiveGroup(24,250);

C2xS3xA4 is a maximal subgroup of   D6:S4  A4:D12
C2xS3xA4 is a maximal quotient of   SL2(F3).11D6  Dic6.A4  D12.A4

Matrix representation of C2xS3xA4 in GL5(Z)

-10000
0-1000
00-100
000-10
0000-1
,
0-1000
1-1000
00100
00010
00001
,
0-1000
-10000
00100
00010
00001
,
10000
01000
00-100
000-10
00001
,
10000
01000
00-100
00010
0000-1
,
10000
01000
00010
00001
00100

G:=sub<GL(5,Integers())| [-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1],[0,1,0,0,0,-1,-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,-1,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0] >;

C2xS3xA4 in GAP, Magma, Sage, TeX

C_2\times S_3\times A_4
% in TeX

G:=Group("C2xS3xA4");
// GroupNames label

G:=SmallGroup(144,190);
// by ID

G=gap.SmallGroup(144,190);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,2,-3,231,106,3461]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^2=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

Export

Character table of C2xS3xA4 in TeX

׿
x
:
Z
F
o
wr
Q
<