non-abelian, soluble, monomial
Aliases: D6⋊2S4, A4⋊2D12, A4⋊C4⋊S3, (C3×A4)⋊3D4, C23.7S32, C2.15(S3×S4), C6.15(C2×S4), (C2×A4).7D6, (S3×C23)⋊2S3, C3⋊1(A4⋊D4), (C22×C6).7D6, (C6×A4).7C22, C22⋊2(C3⋊D12), (C2×S3×A4)⋊2C2, (C2×C3⋊S4)⋊2C2, (C3×A4⋊C4)⋊1C2, (C2×C6)⋊2(C3⋊D4), SmallGroup(288,858)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4⋊D12
G = < a,b,c,d,e | a2=b2=c3=d12=e2=1, cac-1=dad-1=eae=ab=ba, cbc-1=a, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 942 in 134 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C32, Dic3, C12, A4, A4, D6, D6, C2×C6, C2×C6, C22⋊C4, C2×D4, C24, C3×S3, C3⋊S3, C3×C6, D12, C2×Dic3, C3⋊D4, C2×C12, S4, C2×A4, C2×A4, C22×S3, C22×C6, C22≀C2, C3×Dic3, C3×A4, S3×C6, C2×C3⋊S3, D6⋊C4, C3×C22⋊C4, A4⋊C4, C2×D12, C2×C3⋊D4, C2×S4, C22×A4, S3×C23, C3⋊D12, C3⋊S4, S3×A4, C6×A4, D6⋊D4, A4⋊D4, C3×A4⋊C4, C2×C3⋊S4, C2×S3×A4, A4⋊D12
Quotients: C1, C2, C22, S3, D4, D6, D12, C3⋊D4, S4, S32, C2×S4, C3⋊D12, A4⋊D4, S3×S4, A4⋊D12
Character table of A4⋊D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 3C | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 3 | 3 | 6 | 18 | 36 | 2 | 8 | 16 | 12 | 12 | 36 | 2 | 6 | 6 | 8 | 16 | 24 | 24 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | -2 | 0 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ7 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ8 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | -1 | -1 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 0 | 1 | 1 | -1 | -2 | 1 | 0 | 0 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 0 | 1 | 1 | -1 | -2 | 1 | 0 | 0 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 0 | -2 | -2 | 2 | 1 | 1 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 0 | -2 | -2 | 2 | 1 | 1 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ14 | 3 | 3 | -1 | -1 | -3 | 1 | -1 | 3 | 0 | 0 | 1 | -1 | 1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from C2×S4 |
ρ15 | 3 | 3 | -1 | -1 | 3 | -1 | 1 | 3 | 0 | 0 | 1 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from S4 |
ρ16 | 3 | 3 | -1 | -1 | -3 | 1 | 1 | 3 | 0 | 0 | -1 | 1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from C2×S4 |
ρ17 | 3 | 3 | -1 | -1 | 3 | -1 | -1 | 3 | 0 | 0 | -1 | 1 | 1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from S4 |
ρ18 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ19 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 2 | 2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ20 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | -3 | 0 | 0 | 2 | -2 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from S3×S4 |
ρ21 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | -3 | 0 | 0 | -2 | 2 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from S3×S4 |
ρ22 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4⋊D4 |
ρ23 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | -1 | 1 | 0 | 0 | 0 | 0 | -√3 | √3 | √3 | -√3 | orthogonal faithful |
ρ24 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | -1 | 1 | 0 | 0 | 0 | 0 | √3 | -√3 | -√3 | √3 | orthogonal faithful |
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(14 20)(16 22)(18 24)(26 32)(28 34)(30 36)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(1 30 15)(2 16 31)(3 32 17)(4 18 33)(5 34 19)(6 20 35)(7 36 21)(8 22 25)(9 26 23)(10 24 27)(11 28 13)(12 14 29)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 34)(14 33)(15 32)(16 31)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 36)(24 35)
G:=sub<Sym(36)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(14,20)(16,22)(18,24)(26,32)(28,34)(30,36), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,30,15)(2,16,31)(3,32,17)(4,18,33)(5,34,19)(6,20,35)(7,36,21)(8,22,25)(9,26,23)(10,24,27)(11,28,13)(12,14,29), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,3)(4,12)(5,11)(6,10)(7,9)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,36)(24,35)>;
G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(14,20)(16,22)(18,24)(26,32)(28,34)(30,36), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,30,15)(2,16,31)(3,32,17)(4,18,33)(5,34,19)(6,20,35)(7,36,21)(8,22,25)(9,26,23)(10,24,27)(11,28,13)(12,14,29), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,3)(4,12)(5,11)(6,10)(7,9)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,36)(24,35) );
G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(14,20),(16,22),(18,24),(26,32),(28,34),(30,36)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(1,30,15),(2,16,31),(3,32,17),(4,18,33),(5,34,19),(6,20,35),(7,36,21),(8,22,25),(9,26,23),(10,24,27),(11,28,13),(12,14,29)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,34),(14,33),(15,32),(16,31),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,36),(24,35)]])
Matrix representation of A4⋊D12 ►in GL5(𝔽13)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 1 | 12 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 12 |
0 | 0 | 1 | 0 | 12 |
0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
11 | 7 | 0 | 0 | 0 |
6 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
7 | 11 | 0 | 0 | 0 |
11 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 |
G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,12,12,12,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,12,12,12],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[11,6,0,0,0,7,11,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1],[7,11,0,0,0,11,6,0,0,0,0,0,0,12,0,0,0,12,0,0,0,0,0,0,12] >;
A4⋊D12 in GAP, Magma, Sage, TeX
A_4\rtimes D_{12}
% in TeX
G:=Group("A4:D12");
// GroupNames label
G:=SmallGroup(288,858);
// by ID
G=gap.SmallGroup(288,858);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,85,36,234,1684,3036,782,1777,1350]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^12=e^2=1,c*a*c^-1=d*a*d^-1=e*a*e=a*b=b*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export