Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C2×C6

Direct product G=N×Q with N=C2×C6 and Q=C2×C6
dρLabelID
C22×C62144C2^2xC6^2144,197

Semidirect products G=N:Q with N=C2×C6 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊(C2×C6) = C2×S3×A4φ: C2×C6/C2C6 ⊆ Aut C2×C6186+(C2xC6):(C2xC6)144,190
(C2×C6)⋊2(C2×C6) = C3×S3×D4φ: C2×C6/C3C22 ⊆ Aut C2×C6244(C2xC6):2(C2xC6)144,162
(C2×C6)⋊3(C2×C6) = A4×C2×C6φ: C2×C6/C22C3 ⊆ Aut C2×C636(C2xC6):3(C2xC6)144,193
(C2×C6)⋊4(C2×C6) = D4×C3×C6φ: C2×C6/C6C2 ⊆ Aut C2×C672(C2xC6):4(C2xC6)144,179
(C2×C6)⋊5(C2×C6) = C6×C3⋊D4φ: C2×C6/C6C2 ⊆ Aut C2×C624(C2xC6):5(C2xC6)144,167
(C2×C6)⋊6(C2×C6) = S3×C22×C6φ: C2×C6/C6C2 ⊆ Aut C2×C648(C2xC6):6(C2xC6)144,195

Non-split extensions G=N.Q with N=C2×C6 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
(C2×C6).(C2×C6) = C3×D42S3φ: C2×C6/C3C22 ⊆ Aut C2×C6244(C2xC6).(C2xC6)144,163
(C2×C6).2(C2×C6) = C22×C3.A4φ: C2×C6/C22C3 ⊆ Aut C2×C636(C2xC6).2(C2xC6)144,110
(C2×C6).3(C2×C6) = D4×C18φ: C2×C6/C6C2 ⊆ Aut C2×C672(C2xC6).3(C2xC6)144,48
(C2×C6).4(C2×C6) = C9×C4○D4φ: C2×C6/C6C2 ⊆ Aut C2×C6722(C2xC6).4(C2xC6)144,50
(C2×C6).5(C2×C6) = C32×C4○D4φ: C2×C6/C6C2 ⊆ Aut C2×C672(C2xC6).5(C2xC6)144,181
(C2×C6).6(C2×C6) = Dic3×C12φ: C2×C6/C6C2 ⊆ Aut C2×C648(C2xC6).6(C2xC6)144,76
(C2×C6).7(C2×C6) = C3×Dic3⋊C4φ: C2×C6/C6C2 ⊆ Aut C2×C648(C2xC6).7(C2xC6)144,77
(C2×C6).8(C2×C6) = C3×C4⋊Dic3φ: C2×C6/C6C2 ⊆ Aut C2×C648(C2xC6).8(C2xC6)144,78
(C2×C6).9(C2×C6) = C3×D6⋊C4φ: C2×C6/C6C2 ⊆ Aut C2×C648(C2xC6).9(C2xC6)144,79
(C2×C6).10(C2×C6) = C3×C6.D4φ: C2×C6/C6C2 ⊆ Aut C2×C624(C2xC6).10(C2xC6)144,84
(C2×C6).11(C2×C6) = C6×Dic6φ: C2×C6/C6C2 ⊆ Aut C2×C648(C2xC6).11(C2xC6)144,158
(C2×C6).12(C2×C6) = S3×C2×C12φ: C2×C6/C6C2 ⊆ Aut C2×C648(C2xC6).12(C2xC6)144,159
(C2×C6).13(C2×C6) = C6×D12φ: C2×C6/C6C2 ⊆ Aut C2×C648(C2xC6).13(C2xC6)144,160
(C2×C6).14(C2×C6) = C3×C4○D12φ: C2×C6/C6C2 ⊆ Aut C2×C6242(C2xC6).14(C2xC6)144,161
(C2×C6).15(C2×C6) = Dic3×C2×C6φ: C2×C6/C6C2 ⊆ Aut C2×C648(C2xC6).15(C2xC6)144,166
(C2×C6).16(C2×C6) = C9×C22⋊C4central extension (φ=1)72(C2xC6).16(C2xC6)144,21
(C2×C6).17(C2×C6) = C9×C4⋊C4central extension (φ=1)144(C2xC6).17(C2xC6)144,22
(C2×C6).18(C2×C6) = Q8×C18central extension (φ=1)144(C2xC6).18(C2xC6)144,49
(C2×C6).19(C2×C6) = C32×C22⋊C4central extension (φ=1)72(C2xC6).19(C2xC6)144,102
(C2×C6).20(C2×C6) = C32×C4⋊C4central extension (φ=1)144(C2xC6).20(C2xC6)144,103
(C2×C6).21(C2×C6) = Q8×C3×C6central extension (φ=1)144(C2xC6).21(C2xC6)144,180

׿
×
𝔽