metabelian, soluble, monomial, A-group
Aliases: C3⋊S3⋊3C8, C32⋊2(C2×C8), (C3×C12).2C4, C32⋊2C8⋊5C2, C4.3(C32⋊C4), C3⋊Dic3.7C22, (C4×C3⋊S3).6C2, (C2×C3⋊S3).5C4, (C3×C6).1(C2×C4), C2.1(C2×C32⋊C4), SmallGroup(144,130)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2C8 — C3⋊S3⋊3C8 |
C32 — C3⋊S3⋊3C8 |
Generators and relations for C3⋊S3⋊3C8
G = < a,b,c,d | a3=b3=c2=d8=1, ab=ba, cac=a-1, dad-1=ab-1, cbc=b-1, dbd-1=a-1b-1, cd=dc >
Character table of C3⋊S3⋊3C8
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 9 | 9 | 4 | 4 | 1 | 1 | 9 | 9 | 4 | 4 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | i | -i | -i | i | -i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -i | -i | i | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | -i | i | i | -i | i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | i | i | -i | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | -1 | -1 | ζ8 | ζ85 | ζ83 | ζ87 | ζ83 | ζ87 | ζ85 | ζ8 | -i | -i | i | i | linear of order 8 |
ρ10 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | ζ87 | ζ87 | ζ8 | ζ85 | ζ85 | ζ8 | ζ83 | ζ83 | -i | -i | i | i | linear of order 8 |
ρ11 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | ζ8 | ζ8 | ζ87 | ζ83 | ζ83 | ζ87 | ζ85 | ζ85 | i | i | -i | -i | linear of order 8 |
ρ12 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | -1 | -1 | ζ87 | ζ83 | ζ85 | ζ8 | ζ85 | ζ8 | ζ83 | ζ87 | i | i | -i | -i | linear of order 8 |
ρ13 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | ζ83 | ζ83 | ζ85 | ζ8 | ζ8 | ζ85 | ζ87 | ζ87 | -i | -i | i | i | linear of order 8 |
ρ14 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | ζ85 | ζ85 | ζ83 | ζ87 | ζ87 | ζ83 | ζ8 | ζ8 | i | i | -i | -i | linear of order 8 |
ρ15 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | -1 | -1 | ζ85 | ζ8 | ζ87 | ζ83 | ζ87 | ζ83 | ζ8 | ζ85 | -i | -i | i | i | linear of order 8 |
ρ16 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | -1 | -1 | ζ83 | ζ87 | ζ8 | ζ85 | ζ8 | ζ85 | ζ87 | ζ83 | i | i | -i | -i | linear of order 8 |
ρ17 | 4 | 4 | 0 | 0 | -2 | 1 | 4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | -2 | orthogonal lifted from C32⋊C4 |
ρ18 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 2 | orthogonal lifted from C2×C32⋊C4 |
ρ19 | 4 | 4 | 0 | 0 | 1 | -2 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | orthogonal lifted from C32⋊C4 |
ρ20 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -1 | orthogonal lifted from C2×C32⋊C4 |
ρ21 | 4 | -4 | 0 | 0 | 1 | -2 | -4i | 4i | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -2i | 2i | -i | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 1 | -2 | 4i | -4i | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | 2i | -2i | i | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | -2 | 1 | -4i | 4i | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | i | -i | 2i | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | -2 | 1 | 4i | -4i | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -i | i | -2i | complex faithful |
(1 21 13)(2 22 14)(3 15 23)(4 16 24)(5 17 9)(6 18 10)(7 11 19)(8 12 20)
(2 14 22)(4 24 16)(6 10 18)(8 20 12)
(1 5)(2 6)(3 7)(4 8)(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (1,21,13)(2,22,14)(3,15,23)(4,16,24)(5,17,9)(6,18,10)(7,11,19)(8,12,20), (2,14,22)(4,24,16)(6,10,18)(8,20,12), (1,5)(2,6)(3,7)(4,8)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;
G:=Group( (1,21,13)(2,22,14)(3,15,23)(4,16,24)(5,17,9)(6,18,10)(7,11,19)(8,12,20), (2,14,22)(4,24,16)(6,10,18)(8,20,12), (1,5)(2,6)(3,7)(4,8)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(1,21,13),(2,22,14),(3,15,23),(4,16,24),(5,17,9),(6,18,10),(7,11,19),(8,12,20)], [(2,14,22),(4,24,16),(6,10,18),(8,20,12)], [(1,5),(2,6),(3,7),(4,8),(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,244);
C3⋊S3⋊3C8 is a maximal subgroup of
S32⋊C8 C4.19S3≀C2 C4.4PSU3(𝔽2) C4.PSU3(𝔽2) C4.2PSU3(𝔽2) C8×C32⋊C4 (C3×C24)⋊C4 C3⋊S3.5D8 C3⋊S3.5Q16 C4.3F9 C4.F9 C32⋊D8⋊5C2 C3⋊S3⋊D8 C3⋊S3⋊2SD16 C3⋊S3⋊Q16 C3⋊S3⋊M4(2) C62.(C2×C4) C12⋊S3.C4 C33⋊5(C2×C8) C33⋊7(C2×C8)
C3⋊S3⋊3C8 is a maximal quotient of
C3⋊S3⋊3C16 C32⋊3M5(2) C4×C32⋊2C8 C62.6(C2×C4) C32⋊5(C4⋊C8) He3⋊2(C2×C8) C33⋊5(C2×C8) C33⋊7(C2×C8)
Matrix representation of C3⋊S3⋊3C8 ►in GL4(𝔽5) generated by
2 | 1 | 3 | 0 |
1 | 2 | 1 | 4 |
4 | 0 | 0 | 2 |
4 | 3 | 1 | 4 |
0 | 0 | 4 | 3 |
3 | 0 | 0 | 0 |
0 | 3 | 0 | 3 |
0 | 0 | 0 | 1 |
2 | 4 | 2 | 3 |
1 | 3 | 4 | 0 |
0 | 2 | 4 | 3 |
1 | 2 | 4 | 1 |
1 | 0 | 0 | 2 |
3 | 0 | 0 | 4 |
0 | 0 | 3 | 1 |
0 | 1 | 3 | 1 |
G:=sub<GL(4,GF(5))| [2,1,4,4,1,2,0,3,3,1,0,1,0,4,2,4],[0,3,0,0,0,0,3,0,4,0,0,0,3,0,3,1],[2,1,0,1,4,3,2,2,2,4,4,4,3,0,3,1],[1,3,0,0,0,0,0,1,0,0,3,3,2,4,1,1] >;
C3⋊S3⋊3C8 in GAP, Magma, Sage, TeX
C_3\rtimes S_3\rtimes_3C_8
% in TeX
G:=Group("C3:S3:3C8");
// GroupNames label
G:=SmallGroup(144,130);
// by ID
G=gap.SmallGroup(144,130);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,24,55,50,3364,256,4613,881]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^2=d^8=1,a*b=b*a,c*a*c=a^-1,d*a*d^-1=a*b^-1,c*b*c=b^-1,d*b*d^-1=a^-1*b^-1,c*d=d*c>;
// generators/relations
Export
Subgroup lattice of C3⋊S3⋊3C8 in TeX
Character table of C3⋊S3⋊3C8 in TeX