Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=S3

Direct product G=N×Q with N=C3×Q8 and Q=S3
dρLabelID
C3×S3×Q8484C3xS3xQ8144,164

Semidirect products G=N:Q with N=C3×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1S3 = C6.6S4φ: S3/C1S3 ⊆ Out C3×Q8244+(C3xQ8):1S3144,125
(C3×Q8)⋊2S3 = C3×GL2(𝔽3)φ: S3/C1S3 ⊆ Out C3×Q8242(C3xQ8):2S3144,122
(C3×Q8)⋊3S3 = C3211SD16φ: S3/C3C2 ⊆ Out C3×Q872(C3xQ8):3S3144,98
(C3×Q8)⋊4S3 = Q8×C3⋊S3φ: S3/C3C2 ⊆ Out C3×Q872(C3xQ8):4S3144,174
(C3×Q8)⋊5S3 = C12.26D6φ: S3/C3C2 ⊆ Out C3×Q872(C3xQ8):5S3144,175
(C3×Q8)⋊6S3 = C3×Q82S3φ: S3/C3C2 ⊆ Out C3×Q8484(C3xQ8):6S3144,82
(C3×Q8)⋊7S3 = C3×Q83S3φ: trivial image484(C3xQ8):7S3144,165

Non-split extensions G=N.Q with N=C3×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×Q8).1S3 = Q8.D9φ: S3/C1S3 ⊆ Out C3×Q81444-(C3xQ8).1S3144,31
(C3×Q8).2S3 = Q8⋊D9φ: S3/C1S3 ⊆ Out C3×Q8724+(C3xQ8).2S3144,32
(C3×Q8).3S3 = C6.5S4φ: S3/C1S3 ⊆ Out C3×Q8484-(C3xQ8).3S3144,124
(C3×Q8).4S3 = C3×CSU2(𝔽3)φ: S3/C1S3 ⊆ Out C3×Q8482(C3xQ8).4S3144,121
(C3×Q8).5S3 = C9⋊Q16φ: S3/C3C2 ⊆ Out C3×Q81444-(C3xQ8).5S3144,17
(C3×Q8).6S3 = Q82D9φ: S3/C3C2 ⊆ Out C3×Q8724+(C3xQ8).6S3144,18
(C3×Q8).7S3 = Q8×D9φ: S3/C3C2 ⊆ Out C3×Q8724-(C3xQ8).7S3144,43
(C3×Q8).8S3 = Q83D9φ: S3/C3C2 ⊆ Out C3×Q8724+(C3xQ8).8S3144,44
(C3×Q8).9S3 = C327Q16φ: S3/C3C2 ⊆ Out C3×Q8144(C3xQ8).9S3144,99
(C3×Q8).10S3 = C3×C3⋊Q16φ: S3/C3C2 ⊆ Out C3×Q8484(C3xQ8).10S3144,83

׿
×
𝔽