direct product, non-abelian, soluble
Aliases: C3×CSU2(𝔽3), C6.8S4, SL2(𝔽3).C6, Q8.(C3×S3), C2.2(C3×S4), (C3×Q8).4S3, (C3×SL2(𝔽3)).2C2, SmallGroup(144,121)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — Q8 — SL2(𝔽3) — C3×SL2(𝔽3) — C3×CSU2(𝔽3) |
SL2(𝔽3) — C3×CSU2(𝔽3) |
Generators and relations for C3×CSU2(𝔽3)
G = < a,b,c,d,e | a3=b4=d3=1, c2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ece-1=b-1, dbd-1=bc, ebe-1=b2c, dcd-1=b, ede-1=d-1 >
Character table of C3×CSU2(𝔽3)
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 6 | 12 | 1 | 1 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | 12 | 12 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | -1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ4 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ5 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | -1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ7 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | -2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | -√2 | √2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | symplectic lifted from CSU2(𝔽3), Schur index 2 |
ρ9 | 2 | -2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | √2 | -√2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | symplectic lifted from CSU2(𝔽3), Schur index 2 |
ρ10 | 2 | 2 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1 | 2 | 0 | -1-√-3 | -1+√-3 | -1 | ζ6 | ζ65 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ11 | 2 | 2 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1 | 2 | 0 | -1+√-3 | -1-√-3 | -1 | ζ65 | ζ6 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ12 | 2 | -2 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1 | 0 | 0 | 1+√-3 | 1-√-3 | 1 | ζ32 | ζ3 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ83ζ32-ζ8ζ32 | ζ87ζ32-ζ85ζ32 | ζ87ζ3-ζ85ζ3 | ζ83ζ3-ζ8ζ3 | complex faithful |
ρ13 | 2 | -2 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1 | 0 | 0 | 1+√-3 | 1-√-3 | 1 | ζ32 | ζ3 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ87ζ32-ζ85ζ32 | ζ83ζ32-ζ8ζ32 | ζ83ζ3-ζ8ζ3 | ζ87ζ3-ζ85ζ3 | complex faithful |
ρ14 | 2 | -2 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1 | 0 | 0 | 1-√-3 | 1+√-3 | 1 | ζ3 | ζ32 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ83ζ3-ζ8ζ3 | ζ87ζ3-ζ85ζ3 | ζ87ζ32-ζ85ζ32 | ζ83ζ32-ζ8ζ32 | complex faithful |
ρ15 | 2 | -2 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1 | 0 | 0 | 1-√-3 | 1+√-3 | 1 | ζ3 | ζ32 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ87ζ3-ζ85ζ3 | ζ83ζ3-ζ8ζ3 | ζ83ζ32-ζ8ζ32 | ζ87ζ32-ζ85ζ32 | complex faithful |
ρ16 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | -1 | 1 | 3 | 3 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ17 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from S4 |
ρ18 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | -1 | ζ65 | ζ6 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | complex lifted from C3×S4 |
ρ19 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 1 | 1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | complex lifted from C3×S4 |
ρ20 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | -1 | ζ6 | ζ65 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | complex lifted from C3×S4 |
ρ21 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 1 | 1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | complex lifted from C3×S4 |
ρ22 | 4 | -4 | 4 | 4 | 1 | 1 | 1 | 0 | 0 | -4 | -4 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from CSU2(𝔽3), Schur index 2 |
ρ23 | 4 | -4 | -2-2√-3 | -2+2√-3 | ζ3 | ζ32 | 1 | 0 | 0 | 2+2√-3 | 2-2√-3 | -1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | -2+2√-3 | -2-2√-3 | ζ32 | ζ3 | 1 | 0 | 0 | 2-2√-3 | 2+2√-3 | -1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 13 25)(2 14 26)(3 15 27)(4 16 28)(5 34 39)(6 35 40)(7 36 37)(8 33 38)(9 17 21)(10 18 22)(11 19 23)(12 20 24)(29 44 48)(30 41 45)(31 42 46)(32 43 47)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 11 3 9)(2 10 4 12)(5 45 7 47)(6 48 8 46)(13 19 15 17)(14 18 16 20)(21 25 23 27)(22 28 24 26)(29 33 31 35)(30 36 32 34)(37 43 39 41)(38 42 40 44)
(1 25 13)(2 23 18)(3 27 15)(4 21 20)(5 32 40)(6 34 43)(7 30 38)(8 36 41)(9 24 16)(10 26 19)(11 22 14)(12 28 17)(29 44 48)(31 42 46)(33 37 45)(35 39 47)
(1 29 3 31)(2 35 4 33)(5 24 7 22)(6 28 8 26)(9 30 11 32)(10 34 12 36)(13 44 15 42)(14 40 16 38)(17 41 19 43)(18 39 20 37)(21 45 23 47)(25 48 27 46)
G:=sub<Sym(48)| (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,34,39)(6,35,40)(7,36,37)(8,33,38)(9,17,21)(10,18,22)(11,19,23)(12,20,24)(29,44,48)(30,41,45)(31,42,46)(32,43,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,11,3,9)(2,10,4,12)(5,45,7,47)(6,48,8,46)(13,19,15,17)(14,18,16,20)(21,25,23,27)(22,28,24,26)(29,33,31,35)(30,36,32,34)(37,43,39,41)(38,42,40,44), (1,25,13)(2,23,18)(3,27,15)(4,21,20)(5,32,40)(6,34,43)(7,30,38)(8,36,41)(9,24,16)(10,26,19)(11,22,14)(12,28,17)(29,44,48)(31,42,46)(33,37,45)(35,39,47), (1,29,3,31)(2,35,4,33)(5,24,7,22)(6,28,8,26)(9,30,11,32)(10,34,12,36)(13,44,15,42)(14,40,16,38)(17,41,19,43)(18,39,20,37)(21,45,23,47)(25,48,27,46)>;
G:=Group( (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,34,39)(6,35,40)(7,36,37)(8,33,38)(9,17,21)(10,18,22)(11,19,23)(12,20,24)(29,44,48)(30,41,45)(31,42,46)(32,43,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,11,3,9)(2,10,4,12)(5,45,7,47)(6,48,8,46)(13,19,15,17)(14,18,16,20)(21,25,23,27)(22,28,24,26)(29,33,31,35)(30,36,32,34)(37,43,39,41)(38,42,40,44), (1,25,13)(2,23,18)(3,27,15)(4,21,20)(5,32,40)(6,34,43)(7,30,38)(8,36,41)(9,24,16)(10,26,19)(11,22,14)(12,28,17)(29,44,48)(31,42,46)(33,37,45)(35,39,47), (1,29,3,31)(2,35,4,33)(5,24,7,22)(6,28,8,26)(9,30,11,32)(10,34,12,36)(13,44,15,42)(14,40,16,38)(17,41,19,43)(18,39,20,37)(21,45,23,47)(25,48,27,46) );
G=PermutationGroup([[(1,13,25),(2,14,26),(3,15,27),(4,16,28),(5,34,39),(6,35,40),(7,36,37),(8,33,38),(9,17,21),(10,18,22),(11,19,23),(12,20,24),(29,44,48),(30,41,45),(31,42,46),(32,43,47)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,11,3,9),(2,10,4,12),(5,45,7,47),(6,48,8,46),(13,19,15,17),(14,18,16,20),(21,25,23,27),(22,28,24,26),(29,33,31,35),(30,36,32,34),(37,43,39,41),(38,42,40,44)], [(1,25,13),(2,23,18),(3,27,15),(4,21,20),(5,32,40),(6,34,43),(7,30,38),(8,36,41),(9,24,16),(10,26,19),(11,22,14),(12,28,17),(29,44,48),(31,42,46),(33,37,45),(35,39,47)], [(1,29,3,31),(2,35,4,33),(5,24,7,22),(6,28,8,26),(9,30,11,32),(10,34,12,36),(13,44,15,42),(14,40,16,38),(17,41,19,43),(18,39,20,37),(21,45,23,47),(25,48,27,46)]])
C3×CSU2(𝔽3) is a maximal subgroup of
CSU2(𝔽3)⋊S3 Dic3.5S4 D6.2S4 C32⋊2CSU2(𝔽3)
C3×CSU2(𝔽3) is a maximal quotient of C32.CSU2(𝔽3) C32⋊CSU2(𝔽3)
Matrix representation of C3×CSU2(𝔽3) ►in GL2(𝔽7) generated by
2 | 0 |
0 | 2 |
6 | 5 |
1 | 1 |
5 | 6 |
5 | 2 |
2 | 0 |
5 | 4 |
2 | 5 |
6 | 5 |
G:=sub<GL(2,GF(7))| [2,0,0,2],[6,1,5,1],[5,5,6,2],[2,5,0,4],[2,6,5,5] >;
C3×CSU2(𝔽3) in GAP, Magma, Sage, TeX
C_3\times {\rm CSU}_2({\mathbb F}_3)
% in TeX
G:=Group("C3xCSU(2,3)");
// GroupNames label
G:=SmallGroup(144,121);
// by ID
G=gap.SmallGroup(144,121);
# by ID
G:=PCGroup([6,-2,-3,-3,-2,2,-2,432,218,867,447,117,544,286,202,88]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=d^3=1,c^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*c*e^-1=b^-1,d*b*d^-1=b*c,e*b*e^-1=b^2*c,d*c*d^-1=b,e*d*e^-1=d^-1>;
// generators/relations
Export
Subgroup lattice of C3×CSU2(𝔽3) in TeX
Character table of C3×CSU2(𝔽3) in TeX