Copied to
clipboard

G = Q8⋊D9order 144 = 24·32

The semidirect product of Q8 and D9 acting via D9/C3=S3

non-abelian, soluble

Aliases: Q8⋊D9, C6.2S4, C3.GL2(𝔽3), Q8⋊C9⋊C2, (C3×Q8).2S3, C2.3(C3.S4), SmallGroup(144,32)

Series: Derived Chief Lower central Upper central

C1C2Q8Q8⋊C9 — Q8⋊D9
C1C2Q8C3×Q8Q8⋊C9 — Q8⋊D9
Q8⋊C9 — Q8⋊D9
C1C2

Generators and relations for Q8⋊D9
 G = < a,b,c,d | a4=c9=d2=1, b2=a2, bab-1=a-1, cac-1=b, dad=a-1b, cbc-1=ab, dbd=a2b, dcd=c-1 >

36C2
3C4
18C22
12S3
4C9
9D4
9C8
3C12
6D6
4C18
4D9
4D9
9SD16
3D12
3C3⋊C8
4D18
3Q82S3

Character table of Q8⋊D9

 class 12A2B3468A8B9A9B9C1218A18B18C
 size 1136262181888812888
ρ1111111111111111    trivial
ρ211-1111-1-11111111    linear of order 2
ρ322022200-1-1-12-1-1-1    orthogonal lifted from S3
ρ4220-12-100ζ9792ζ9594ζ989-1ζ989ζ9594ζ9792    orthogonal lifted from D9
ρ5220-12-100ζ989ζ9792ζ9594-1ζ9594ζ9792ζ989    orthogonal lifted from D9
ρ6220-12-100ζ9594ζ989ζ9792-1ζ9792ζ989ζ9594    orthogonal lifted from D9
ρ72-2020-2-2--2-1-1-10111    complex lifted from GL2(𝔽3)
ρ82-2020-2--2-2-1-1-10111    complex lifted from GL2(𝔽3)
ρ93313-13-1-1000-1000    orthogonal lifted from S4
ρ1033-13-1311000-1000    orthogonal lifted from S4
ρ114-4040-4001110-1-1-1    orthogonal lifted from GL2(𝔽3)
ρ124-40-20200959498997920ζ9792ζ989ζ9594    orthogonal faithful
ρ134-40-20200979295949890ζ989ζ9594ζ9792    orthogonal faithful
ρ144-40-20200989979295940ζ9594ζ9792ζ989    orthogonal faithful
ρ15660-3-2-3000001000    orthogonal lifted from C3.S4

Smallest permutation representation of Q8⋊D9
On 72 points
Generators in S72
(1 15 52 26)(2 29 53 68)(3 55 54 42)(4 18 46 20)(5 32 47 71)(6 58 48 45)(7 12 49 23)(8 35 50 65)(9 61 51 39)(10 57 21 44)(11 72 22 33)(13 60 24 38)(14 66 25 36)(16 63 27 41)(17 69 19 30)(28 40 67 62)(31 43 70 56)(34 37 64 59)
(1 28 52 67)(2 63 53 41)(3 17 54 19)(4 31 46 70)(5 57 47 44)(6 11 48 22)(7 34 49 64)(8 60 50 38)(9 14 51 25)(10 71 21 32)(12 59 23 37)(13 65 24 35)(15 62 26 40)(16 68 27 29)(18 56 20 43)(30 42 69 55)(33 45 72 58)(36 39 66 61)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 9)(2 8)(3 7)(4 6)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 64)(18 72)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)(25 28)(26 36)(27 35)(37 55)(38 63)(39 62)(40 61)(41 60)(42 59)(43 58)(44 57)(45 56)(46 48)(49 54)(50 53)(51 52)

G:=sub<Sym(72)| (1,15,52,26)(2,29,53,68)(3,55,54,42)(4,18,46,20)(5,32,47,71)(6,58,48,45)(7,12,49,23)(8,35,50,65)(9,61,51,39)(10,57,21,44)(11,72,22,33)(13,60,24,38)(14,66,25,36)(16,63,27,41)(17,69,19,30)(28,40,67,62)(31,43,70,56)(34,37,64,59), (1,28,52,67)(2,63,53,41)(3,17,54,19)(4,31,46,70)(5,57,47,44)(6,11,48,22)(7,34,49,64)(8,60,50,38)(9,14,51,25)(10,71,21,32)(12,59,23,37)(13,65,24,35)(15,62,26,40)(16,68,27,29)(18,56,20,43)(30,42,69,55)(33,45,72,58)(36,39,66,61), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,72)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,36)(27,35)(37,55)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,56)(46,48)(49,54)(50,53)(51,52)>;

G:=Group( (1,15,52,26)(2,29,53,68)(3,55,54,42)(4,18,46,20)(5,32,47,71)(6,58,48,45)(7,12,49,23)(8,35,50,65)(9,61,51,39)(10,57,21,44)(11,72,22,33)(13,60,24,38)(14,66,25,36)(16,63,27,41)(17,69,19,30)(28,40,67,62)(31,43,70,56)(34,37,64,59), (1,28,52,67)(2,63,53,41)(3,17,54,19)(4,31,46,70)(5,57,47,44)(6,11,48,22)(7,34,49,64)(8,60,50,38)(9,14,51,25)(10,71,21,32)(12,59,23,37)(13,65,24,35)(15,62,26,40)(16,68,27,29)(18,56,20,43)(30,42,69,55)(33,45,72,58)(36,39,66,61), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,72)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,36)(27,35)(37,55)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,56)(46,48)(49,54)(50,53)(51,52) );

G=PermutationGroup([[(1,15,52,26),(2,29,53,68),(3,55,54,42),(4,18,46,20),(5,32,47,71),(6,58,48,45),(7,12,49,23),(8,35,50,65),(9,61,51,39),(10,57,21,44),(11,72,22,33),(13,60,24,38),(14,66,25,36),(16,63,27,41),(17,69,19,30),(28,40,67,62),(31,43,70,56),(34,37,64,59)], [(1,28,52,67),(2,63,53,41),(3,17,54,19),(4,31,46,70),(5,57,47,44),(6,11,48,22),(7,34,49,64),(8,60,50,38),(9,14,51,25),(10,71,21,32),(12,59,23,37),(13,65,24,35),(15,62,26,40),(16,68,27,29),(18,56,20,43),(30,42,69,55),(33,45,72,58),(36,39,66,61)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,9),(2,8),(3,7),(4,6),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,64),(18,72),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29),(25,28),(26,36),(27,35),(37,55),(38,63),(39,62),(40,61),(41,60),(42,59),(43,58),(44,57),(45,56),(46,48),(49,54),(50,53),(51,52)]])

Q8⋊D9 is a maximal subgroup of   Q8.D18  C12.11S4  C12.4S4  C32.GL2(𝔽3)  C18.6S4  C32.3GL2(𝔽3)
Q8⋊D9 is a maximal quotient of   Q8⋊Dic9  Q8⋊D27  C32.3GL2(𝔽3)

Matrix representation of Q8⋊D9 in GL4(𝔽73) generated by

0100
72000
0010
0001
,
61100
11200
0010
0001
,
6500
66600
003170
00328
,
6500
666700
00328
003170
G:=sub<GL(4,GF(73))| [0,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[61,1,0,0,1,12,0,0,0,0,1,0,0,0,0,1],[6,6,0,0,5,66,0,0,0,0,31,3,0,0,70,28],[6,66,0,0,5,67,0,0,0,0,3,31,0,0,28,70] >;

Q8⋊D9 in GAP, Magma, Sage, TeX

Q_8\rtimes D_9
% in TeX

G:=Group("Q8:D9");
// GroupNames label

G:=SmallGroup(144,32);
// by ID

G=gap.SmallGroup(144,32);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,2,-2,121,79,218,867,1305,117,544,820,202,88]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^9=d^2=1,b^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,d*a*d=a^-1*b,c*b*c^-1=a*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of Q8⋊D9 in TeX
Character table of Q8⋊D9 in TeX

׿
×
𝔽