Aliases: Q8⋊D9, C6.2S4, C3.GL2(𝔽3), Q8⋊C9⋊C2, (C3×Q8).2S3, C2.3(C3.S4), SmallGroup(144,32)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — Q8 — Q8⋊C9 — Q8⋊D9 |
C1 — C2 — Q8 — C3×Q8 — Q8⋊C9 — Q8⋊D9 |
Q8⋊C9 — Q8⋊D9 |
Generators and relations for Q8⋊D9
G = < a,b,c,d | a4=c9=d2=1, b2=a2, bab-1=a-1, cac-1=b, dad=a-1b, cbc-1=ab, dbd=a2b, dcd=c-1 >
Character table of Q8⋊D9
class | 1 | 2A | 2B | 3 | 4 | 6 | 8A | 8B | 9A | 9B | 9C | 12 | 18A | 18B | 18C | |
size | 1 | 1 | 36 | 2 | 6 | 2 | 18 | 18 | 8 | 8 | 8 | 12 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 0 | -1 | 2 | -1 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ5 | 2 | 2 | 0 | -1 | 2 | -1 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ6 | 2 | 2 | 0 | -1 | 2 | -1 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ7 | 2 | -2 | 0 | 2 | 0 | -2 | √-2 | -√-2 | -1 | -1 | -1 | 0 | 1 | 1 | 1 | complex lifted from GL2(𝔽3) |
ρ8 | 2 | -2 | 0 | 2 | 0 | -2 | -√-2 | √-2 | -1 | -1 | -1 | 0 | 1 | 1 | 1 | complex lifted from GL2(𝔽3) |
ρ9 | 3 | 3 | 1 | 3 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ10 | 3 | 3 | -1 | 3 | -1 | 3 | 1 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ11 | 4 | -4 | 0 | 4 | 0 | -4 | 0 | 0 | 1 | 1 | 1 | 0 | -1 | -1 | -1 | orthogonal lifted from GL2(𝔽3) |
ρ12 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | 0 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | orthogonal faithful |
ρ13 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | 0 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | orthogonal faithful |
ρ14 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | 0 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | orthogonal faithful |
ρ15 | 6 | 6 | 0 | -3 | -2 | -3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | orthogonal lifted from C3.S4 |
(1 15 52 26)(2 29 53 68)(3 55 54 42)(4 18 46 20)(5 32 47 71)(6 58 48 45)(7 12 49 23)(8 35 50 65)(9 61 51 39)(10 57 21 44)(11 72 22 33)(13 60 24 38)(14 66 25 36)(16 63 27 41)(17 69 19 30)(28 40 67 62)(31 43 70 56)(34 37 64 59)
(1 28 52 67)(2 63 53 41)(3 17 54 19)(4 31 46 70)(5 57 47 44)(6 11 48 22)(7 34 49 64)(8 60 50 38)(9 14 51 25)(10 71 21 32)(12 59 23 37)(13 65 24 35)(15 62 26 40)(16 68 27 29)(18 56 20 43)(30 42 69 55)(33 45 72 58)(36 39 66 61)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 9)(2 8)(3 7)(4 6)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 64)(18 72)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)(25 28)(26 36)(27 35)(37 55)(38 63)(39 62)(40 61)(41 60)(42 59)(43 58)(44 57)(45 56)(46 48)(49 54)(50 53)(51 52)
G:=sub<Sym(72)| (1,15,52,26)(2,29,53,68)(3,55,54,42)(4,18,46,20)(5,32,47,71)(6,58,48,45)(7,12,49,23)(8,35,50,65)(9,61,51,39)(10,57,21,44)(11,72,22,33)(13,60,24,38)(14,66,25,36)(16,63,27,41)(17,69,19,30)(28,40,67,62)(31,43,70,56)(34,37,64,59), (1,28,52,67)(2,63,53,41)(3,17,54,19)(4,31,46,70)(5,57,47,44)(6,11,48,22)(7,34,49,64)(8,60,50,38)(9,14,51,25)(10,71,21,32)(12,59,23,37)(13,65,24,35)(15,62,26,40)(16,68,27,29)(18,56,20,43)(30,42,69,55)(33,45,72,58)(36,39,66,61), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,72)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,36)(27,35)(37,55)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,56)(46,48)(49,54)(50,53)(51,52)>;
G:=Group( (1,15,52,26)(2,29,53,68)(3,55,54,42)(4,18,46,20)(5,32,47,71)(6,58,48,45)(7,12,49,23)(8,35,50,65)(9,61,51,39)(10,57,21,44)(11,72,22,33)(13,60,24,38)(14,66,25,36)(16,63,27,41)(17,69,19,30)(28,40,67,62)(31,43,70,56)(34,37,64,59), (1,28,52,67)(2,63,53,41)(3,17,54,19)(4,31,46,70)(5,57,47,44)(6,11,48,22)(7,34,49,64)(8,60,50,38)(9,14,51,25)(10,71,21,32)(12,59,23,37)(13,65,24,35)(15,62,26,40)(16,68,27,29)(18,56,20,43)(30,42,69,55)(33,45,72,58)(36,39,66,61), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,72)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,36)(27,35)(37,55)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,56)(46,48)(49,54)(50,53)(51,52) );
G=PermutationGroup([[(1,15,52,26),(2,29,53,68),(3,55,54,42),(4,18,46,20),(5,32,47,71),(6,58,48,45),(7,12,49,23),(8,35,50,65),(9,61,51,39),(10,57,21,44),(11,72,22,33),(13,60,24,38),(14,66,25,36),(16,63,27,41),(17,69,19,30),(28,40,67,62),(31,43,70,56),(34,37,64,59)], [(1,28,52,67),(2,63,53,41),(3,17,54,19),(4,31,46,70),(5,57,47,44),(6,11,48,22),(7,34,49,64),(8,60,50,38),(9,14,51,25),(10,71,21,32),(12,59,23,37),(13,65,24,35),(15,62,26,40),(16,68,27,29),(18,56,20,43),(30,42,69,55),(33,45,72,58),(36,39,66,61)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,9),(2,8),(3,7),(4,6),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,64),(18,72),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29),(25,28),(26,36),(27,35),(37,55),(38,63),(39,62),(40,61),(41,60),(42,59),(43,58),(44,57),(45,56),(46,48),(49,54),(50,53),(51,52)]])
Q8⋊D9 is a maximal subgroup of
Q8.D18 C12.11S4 C12.4S4 C32.GL2(𝔽3) C18.6S4 C32.3GL2(𝔽3)
Q8⋊D9 is a maximal quotient of Q8⋊Dic9 Q8⋊D27 C32.3GL2(𝔽3)
Matrix representation of Q8⋊D9 ►in GL4(𝔽73) generated by
0 | 1 | 0 | 0 |
72 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
61 | 1 | 0 | 0 |
1 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
6 | 5 | 0 | 0 |
6 | 66 | 0 | 0 |
0 | 0 | 31 | 70 |
0 | 0 | 3 | 28 |
6 | 5 | 0 | 0 |
66 | 67 | 0 | 0 |
0 | 0 | 3 | 28 |
0 | 0 | 31 | 70 |
G:=sub<GL(4,GF(73))| [0,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[61,1,0,0,1,12,0,0,0,0,1,0,0,0,0,1],[6,6,0,0,5,66,0,0,0,0,31,3,0,0,70,28],[6,66,0,0,5,67,0,0,0,0,3,31,0,0,28,70] >;
Q8⋊D9 in GAP, Magma, Sage, TeX
Q_8\rtimes D_9
% in TeX
G:=Group("Q8:D9");
// GroupNames label
G:=SmallGroup(144,32);
// by ID
G=gap.SmallGroup(144,32);
# by ID
G:=PCGroup([6,-2,-3,-3,-2,2,-2,121,79,218,867,1305,117,544,820,202,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^9=d^2=1,b^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,d*a*d=a^-1*b,c*b*c^-1=a*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of Q8⋊D9 in TeX
Character table of Q8⋊D9 in TeX