Extensions 1→N→G→Q→1 with N=C3×SL2(𝔽3) and Q=C2

Direct product G=N×Q with N=C3×SL2(𝔽3) and Q=C2
dρLabelID
C6×SL2(𝔽3)48C6xSL(2,3)144,156

Semidirect products G=N:Q with N=C3×SL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×SL2(𝔽3))⋊1C2 = C6.6S4φ: C2/C1C2 ⊆ Out C3×SL2(𝔽3)244+(C3xSL(2,3)):1C2144,125
(C3×SL2(𝔽3))⋊2C2 = Dic3.A4φ: C2/C1C2 ⊆ Out C3×SL2(𝔽3)484+(C3xSL(2,3)):2C2144,127
(C3×SL2(𝔽3))⋊3C2 = S3×SL2(𝔽3)φ: C2/C1C2 ⊆ Out C3×SL2(𝔽3)244-(C3xSL(2,3)):3C2144,128
(C3×SL2(𝔽3))⋊4C2 = C3×GL2(𝔽3)φ: C2/C1C2 ⊆ Out C3×SL2(𝔽3)242(C3xSL(2,3)):4C2144,122
(C3×SL2(𝔽3))⋊5C2 = C3×C4.A4φ: trivial image482(C3xSL(2,3)):5C2144,157

Non-split extensions G=N.Q with N=C3×SL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×SL2(𝔽3)).1C2 = C6.5S4φ: C2/C1C2 ⊆ Out C3×SL2(𝔽3)484-(C3xSL(2,3)).1C2144,124
(C3×SL2(𝔽3)).2C2 = C3×CSU2(𝔽3)φ: C2/C1C2 ⊆ Out C3×SL2(𝔽3)482(C3xSL(2,3)).2C2144,121

׿
×
𝔽