Copied to
clipboard

G = Dic3.A4order 144 = 24·32

The non-split extension by Dic3 of A4 acting through Inn(Dic3)

non-abelian, soluble

Aliases: Dic3.A4, SL2(F3):2S3, C3:(C4.A4), (C3xQ8).C6, C2.2(S3xA4), C6.1(C2xA4), Q8:3S3:C3, Q8.2(C3xS3), (C3xSL2(F3)):2C2, SmallGroup(144,127)

Series: Derived Chief Lower central Upper central

C1C2C3xQ8 — Dic3.A4
C1C2C6C3xQ8C3xSL2(F3) — Dic3.A4
C3xQ8 — Dic3.A4
C1C2

Generators and relations for Dic3.A4
 G = < a,b,c,d,e | a6=e3=1, b2=c2=d2=a3, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a3c, ece-1=a3cd, ede-1=c >

Subgroups: 136 in 33 conjugacy classes, 11 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, A4, C3xS3, C2xA4, C4.A4, S3xA4, Dic3.A4
18C2
4C3
8C3
3C4
3C4
9C22
4C6
6S3
8C6
4C32
9C2xC4
9D4
3C12
3D6
12C12
4C3xC6
3C4oD4
2SL2(F3)
3C4xS3
3D12
4C3xDic3
3C4.A4

Character table of Dic3.A4

 class 12A2B3A3B3C3D3E4A4B4C6A6B6C6D6E12A12B12C12D12E
 size 111824488336244881212121212
ρ1111111111111111111111    trivial
ρ211-111111-1-11111111-1-1-1-1    linear of order 2
ρ31111ζ3ζ32ζ3ζ321111ζ3ζ32ζ3ζ321ζ32ζ32ζ3ζ3    linear of order 3
ρ41111ζ32ζ3ζ32ζ31111ζ32ζ3ζ32ζ31ζ3ζ3ζ32ζ32    linear of order 3
ρ511-11ζ32ζ3ζ32ζ3-1-111ζ32ζ3ζ32ζ31ζ65ζ65ζ6ζ6    linear of order 6
ρ611-11ζ3ζ32ζ3ζ32-1-111ζ3ζ32ζ3ζ321ζ6ζ6ζ65ζ65    linear of order 6
ρ7220-122-1-1002-122-1-1-10000    orthogonal lifted from S3
ρ8220-1-1+-3-1--3ζ65ζ6002-1-1+-3-1--3ζ65ζ6-10000    complex lifted from C3xS3
ρ9220-1-1--3-1+-3ζ6ζ65002-1-1--3-1+-3ζ6ζ65-10000    complex lifted from C3xS3
ρ102-202-1-1-1-1-2i2i0-211110-ii-ii    complex lifted from C4.A4
ρ112-202-1-1-1-12i-2i0-211110i-ii-i    complex lifted from C4.A4
ρ122-202ζ65ζ6ζ65ζ62i-2i0-2ζ3ζ32ζ3ζ320ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ3    complex lifted from C4.A4
ρ132-202ζ6ζ65ζ6ζ65-2i2i0-2ζ32ζ3ζ32ζ30ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ32    complex lifted from C4.A4
ρ142-202ζ6ζ65ζ6ζ652i-2i0-2ζ32ζ3ζ32ζ30ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ32    complex lifted from C4.A4
ρ152-202ζ65ζ6ζ65ζ6-2i2i0-2ζ3ζ32ζ3ζ320ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ3    complex lifted from C4.A4
ρ1633-13000033-130000-10000    orthogonal lifted from A4
ρ1733130000-3-3-130000-10000    orthogonal lifted from C2xA4
ρ184-40-2-2-211000222-1-100000    orthogonal faithful, Schur index 2
ρ194-40-21--31+-3ζ3ζ320002-1+-3-1--3ζ65ζ600000    complex faithful
ρ204-40-21+-31--3ζ32ζ30002-1--3-1+-3ζ6ζ6500000    complex faithful
ρ21660-3000000-2-3000010000    orthogonal lifted from S3xA4

Smallest permutation representation of Dic3.A4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 28 4 25)(2 27 5 30)(3 26 6 29)(7 32 10 35)(8 31 11 34)(9 36 12 33)(13 38 16 41)(14 37 17 40)(15 42 18 39)(19 44 22 47)(20 43 23 46)(21 48 24 45)
(1 8 4 11)(2 9 5 12)(3 10 6 7)(13 19 16 22)(14 20 17 23)(15 21 18 24)(25 34 28 31)(26 35 29 32)(27 36 30 33)(37 43 40 46)(38 44 41 47)(39 45 42 48)
(1 14 4 17)(2 15 5 18)(3 16 6 13)(7 22 10 19)(8 23 11 20)(9 24 12 21)(25 40 28 37)(26 41 29 38)(27 42 30 39)(31 46 34 43)(32 47 35 44)(33 48 36 45)
(1 3 5)(2 4 6)(7 15 23)(8 16 24)(9 17 19)(10 18 20)(11 13 21)(12 14 22)(25 29 27)(26 30 28)(31 41 45)(32 42 46)(33 37 47)(34 38 48)(35 39 43)(36 40 44)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,4,25)(2,27,5,30)(3,26,6,29)(7,32,10,35)(8,31,11,34)(9,36,12,33)(13,38,16,41)(14,37,17,40)(15,42,18,39)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,8,4,11)(2,9,5,12)(3,10,6,7)(13,19,16,22)(14,20,17,23)(15,21,18,24)(25,34,28,31)(26,35,29,32)(27,36,30,33)(37,43,40,46)(38,44,41,47)(39,45,42,48), (1,14,4,17)(2,15,5,18)(3,16,6,13)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,40,28,37)(26,41,29,38)(27,42,30,39)(31,46,34,43)(32,47,35,44)(33,48,36,45), (1,3,5)(2,4,6)(7,15,23)(8,16,24)(9,17,19)(10,18,20)(11,13,21)(12,14,22)(25,29,27)(26,30,28)(31,41,45)(32,42,46)(33,37,47)(34,38,48)(35,39,43)(36,40,44)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,4,25)(2,27,5,30)(3,26,6,29)(7,32,10,35)(8,31,11,34)(9,36,12,33)(13,38,16,41)(14,37,17,40)(15,42,18,39)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,8,4,11)(2,9,5,12)(3,10,6,7)(13,19,16,22)(14,20,17,23)(15,21,18,24)(25,34,28,31)(26,35,29,32)(27,36,30,33)(37,43,40,46)(38,44,41,47)(39,45,42,48), (1,14,4,17)(2,15,5,18)(3,16,6,13)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,40,28,37)(26,41,29,38)(27,42,30,39)(31,46,34,43)(32,47,35,44)(33,48,36,45), (1,3,5)(2,4,6)(7,15,23)(8,16,24)(9,17,19)(10,18,20)(11,13,21)(12,14,22)(25,29,27)(26,30,28)(31,41,45)(32,42,46)(33,37,47)(34,38,48)(35,39,43)(36,40,44) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,28,4,25),(2,27,5,30),(3,26,6,29),(7,32,10,35),(8,31,11,34),(9,36,12,33),(13,38,16,41),(14,37,17,40),(15,42,18,39),(19,44,22,47),(20,43,23,46),(21,48,24,45)], [(1,8,4,11),(2,9,5,12),(3,10,6,7),(13,19,16,22),(14,20,17,23),(15,21,18,24),(25,34,28,31),(26,35,29,32),(27,36,30,33),(37,43,40,46),(38,44,41,47),(39,45,42,48)], [(1,14,4,17),(2,15,5,18),(3,16,6,13),(7,22,10,19),(8,23,11,20),(9,24,12,21),(25,40,28,37),(26,41,29,38),(27,42,30,39),(31,46,34,43),(32,47,35,44),(33,48,36,45)], [(1,3,5),(2,4,6),(7,15,23),(8,16,24),(9,17,19),(10,18,20),(11,13,21),(12,14,22),(25,29,27),(26,30,28),(31,41,45),(32,42,46),(33,37,47),(34,38,48),(35,39,43),(36,40,44)]])

Dic3.A4 is a maximal subgroup of
CSU2(F3):S3  Dic3.4S4  Dic3.5S4  GL2(F3):S3  SL2(F3).11D6  Dic6.A4  S3xC4.A4  Dic9.A4  Dic9.2A4  C6.(S3xA4)  C3:Dic3.2A4
Dic3.A4 is a maximal quotient of
Dic3xSL2(F3)  Dic9.A4  Dic9.2A4  Q8:C9:3S3  C6.(S3xA4)  C3:Dic3.2A4

Matrix representation of Dic3.A4 in GL4(F5) generated by

0221
4143
4202
3141
,
0130
0041
3023
3423
,
2431
1042
2223
0121
,
4444
1244
1103
0324
,
4014
0420
0200
1200
G:=sub<GL(4,GF(5))| [0,4,4,3,2,1,2,1,2,4,0,4,1,3,2,1],[0,0,3,3,1,0,0,4,3,4,2,2,0,1,3,3],[2,1,2,0,4,0,2,1,3,4,2,2,1,2,3,1],[4,1,1,0,4,2,1,3,4,4,0,2,4,4,3,4],[4,0,0,1,0,4,2,2,1,2,0,0,4,0,0,0] >;

Dic3.A4 in GAP, Magma, Sage, TeX

{\rm Dic}_3.A_4
% in TeX

G:=Group("Dic3.A4");
// GroupNames label

G:=SmallGroup(144,127);
// by ID

G=gap.SmallGroup(144,127);
# by ID

G:=PCGroup([6,-2,-3,-2,2,-3,-2,432,170,230,81,351,165,1444]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=e^3=1,b^2=c^2=d^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^3*c,e*c*e^-1=a^3*c*d,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of Dic3.A4 in TeX
Character table of Dic3.A4 in TeX

׿
x
:
Z
F
o
wr
Q
<