Extensions 1→N→G→Q→1 with N=C2×C3⋊Dic3 and Q=C2

Direct product G=N×Q with N=C2×C3⋊Dic3 and Q=C2
dρLabelID
C22×C3⋊Dic3144C2^2xC3:Dic3144,176

Semidirect products G=N:Q with N=C2×C3⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3⋊Dic3)⋊1C2 = D6⋊Dic3φ: C2/C1C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3):1C2144,64
(C2×C3⋊Dic3)⋊2C2 = C6.11D12φ: C2/C1C2 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):2C2144,95
(C2×C3⋊Dic3)⋊3C2 = C625C4φ: C2/C1C2 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):3C2144,100
(C2×C3⋊Dic3)⋊4C2 = C2×S3×Dic3φ: C2/C1C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3):4C2144,146
(C2×C3⋊Dic3)⋊5C2 = D6.4D6φ: C2/C1C2 ⊆ Out C2×C3⋊Dic3244-(C2xC3:Dic3):5C2144,148
(C2×C3⋊Dic3)⋊6C2 = C2×D6⋊S3φ: C2/C1C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3):6C2144,150
(C2×C3⋊Dic3)⋊7C2 = C12.D6φ: C2/C1C2 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):7C2144,173
(C2×C3⋊Dic3)⋊8C2 = C2×C327D4φ: C2/C1C2 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):8C2144,177
(C2×C3⋊Dic3)⋊9C2 = C2×C4×C3⋊S3φ: trivial image72(C2xC3:Dic3):9C2144,169

Non-split extensions G=N.Q with N=C2×C3⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3⋊Dic3).1C2 = Dic32φ: C2/C1C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3).1C2144,63
(C2×C3⋊Dic3).2C2 = Dic3⋊Dic3φ: C2/C1C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3).2C2144,66
(C2×C3⋊Dic3).3C2 = C62.C22φ: C2/C1C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3).3C2144,67
(C2×C3⋊Dic3).4C2 = C6.Dic6φ: C2/C1C2 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).4C2144,93
(C2×C3⋊Dic3).5C2 = C12⋊Dic3φ: C2/C1C2 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).5C2144,94
(C2×C3⋊Dic3).6C2 = C2×C322C8φ: C2/C1C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3).6C2144,134
(C2×C3⋊Dic3).7C2 = C62.C4φ: C2/C1C2 ⊆ Out C2×C3⋊Dic3244-(C2xC3:Dic3).7C2144,135
(C2×C3⋊Dic3).8C2 = C2×C322Q8φ: C2/C1C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3).8C2144,152
(C2×C3⋊Dic3).9C2 = C2×C324Q8φ: C2/C1C2 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).9C2144,168
(C2×C3⋊Dic3).10C2 = C4×C3⋊Dic3φ: trivial image144(C2xC3:Dic3).10C2144,92

׿
×
𝔽