Extensions 1→N→G→Q→1 with N=C2xC3:Dic3 and Q=C2

Direct product G=NxQ with N=C2xC3:Dic3 and Q=C2
dρLabelID
C22xC3:Dic3144C2^2xC3:Dic3144,176

Semidirect products G=N:Q with N=C2xC3:Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC3:Dic3):1C2 = D6:Dic3φ: C2/C1C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3):1C2144,64
(C2xC3:Dic3):2C2 = C6.11D12φ: C2/C1C2 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):2C2144,95
(C2xC3:Dic3):3C2 = C62:5C4φ: C2/C1C2 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):3C2144,100
(C2xC3:Dic3):4C2 = C2xS3xDic3φ: C2/C1C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3):4C2144,146
(C2xC3:Dic3):5C2 = D6.4D6φ: C2/C1C2 ⊆ Out C2xC3:Dic3244-(C2xC3:Dic3):5C2144,148
(C2xC3:Dic3):6C2 = C2xD6:S3φ: C2/C1C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3):6C2144,150
(C2xC3:Dic3):7C2 = C12.D6φ: C2/C1C2 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):7C2144,173
(C2xC3:Dic3):8C2 = C2xC32:7D4φ: C2/C1C2 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):8C2144,177
(C2xC3:Dic3):9C2 = C2xC4xC3:S3φ: trivial image72(C2xC3:Dic3):9C2144,169

Non-split extensions G=N.Q with N=C2xC3:Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC3:Dic3).1C2 = Dic32φ: C2/C1C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3).1C2144,63
(C2xC3:Dic3).2C2 = Dic3:Dic3φ: C2/C1C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3).2C2144,66
(C2xC3:Dic3).3C2 = C62.C22φ: C2/C1C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3).3C2144,67
(C2xC3:Dic3).4C2 = C6.Dic6φ: C2/C1C2 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3).4C2144,93
(C2xC3:Dic3).5C2 = C12:Dic3φ: C2/C1C2 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3).5C2144,94
(C2xC3:Dic3).6C2 = C2xC32:2C8φ: C2/C1C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3).6C2144,134
(C2xC3:Dic3).7C2 = C62.C4φ: C2/C1C2 ⊆ Out C2xC3:Dic3244-(C2xC3:Dic3).7C2144,135
(C2xC3:Dic3).8C2 = C2xC32:2Q8φ: C2/C1C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3).8C2144,152
(C2xC3:Dic3).9C2 = C2xC32:4Q8φ: C2/C1C2 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3).9C2144,168
(C2xC3:Dic3).10C2 = C4xC3:Dic3φ: trivial image144(C2xC3:Dic3).10C2144,92

׿
x
:
Z
F
o
wr
Q
<