metabelian, supersoluble, monomial
Aliases: D6.4D6, Dic3.4D6, C62.8C22, C3⋊D4⋊1S3, C22.2S32, (C2×C6).5D6, D6⋊S3⋊4C2, (S3×Dic3)⋊2C2, C32⋊2Q8⋊5C2, C32⋊6(C4○D4), C3⋊4(D4⋊2S3), (S3×C6).4C22, (C3×C6).12C23, C6.12(C22×S3), C3⋊Dic3.14C22, (C3×Dic3).5C22, C2.13(C2×S32), (C3×C3⋊D4)⋊2C2, (C2×C3⋊Dic3)⋊5C2, SmallGroup(144,148)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6.4D6
G = < a,b,c,d | a6=b2=1, c6=d2=a3, bab=cac-1=dad-1=a-1, cbc-1=ab, dbd-1=a4b, dcd-1=c5 >
Subgroups: 256 in 88 conjugacy classes, 32 normal (12 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, Q8, C32, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C4○D4, C3×S3, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3⋊D4, C3×D4, C3×Dic3, C3⋊Dic3, S3×C6, C62, D4⋊2S3, S3×Dic3, D6⋊S3, C32⋊2Q8, C3×C3⋊D4, C2×C3⋊Dic3, D6.4D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, S32, D4⋊2S3, C2×S32, D6.4D6
Character table of D6.4D6
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 12A | 12B | |
size | 1 | 1 | 2 | 6 | 6 | 2 | 2 | 4 | 6 | 6 | 9 | 9 | 18 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | -1 | 0 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | -1 | 0 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 0 | -1 | 0 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -2 | 0 | 2 | 2 | -1 | -1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | 1 | 1 | -2 | 1 | -1 | 0 | -1 | 0 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | 2 | 0 | -1 | 2 | -1 | 0 | -2 | 0 | 0 | 0 | -1 | 2 | 1 | -2 | 1 | 1 | -1 | -1 | 0 | 1 | 0 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | 0 | -2 | 2 | -1 | -1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 1 | 0 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | -2 | 0 | -2 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | 1 | 1 | -2 | 1 | -1 | 0 | 1 | 0 | -1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | -1 | 0 | 2 | 0 | 0 | 0 | -1 | 2 | 1 | -2 | 1 | 1 | -1 | 1 | 0 | -1 | 0 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | -2 | 0 | -1 | 2 | -1 | 0 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 1 | 0 | 1 | 0 | orthogonal lifted from D6 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 2i | -2i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2i | 2i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -1 | 2 | 2 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ20 | 4 | 4 | 4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ21 | 4 | -4 | 0 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -4 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
ρ22 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -3 | 0 | 0 | 3 | -1 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -4 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
ρ24 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 0 | 0 | -3 | -1 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 3 5 7 9 11)(2 12 10 8 6 4)(13 23 21 19 17 15)(14 16 18 20 22 24)
(1 6)(2 9)(3 8)(4 11)(5 10)(7 12)(13 20)(14 19)(15 22)(16 21)(17 24)(18 23)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 16 7 22)(2 21 8 15)(3 14 9 20)(4 19 10 13)(5 24 11 18)(6 17 12 23)
G:=sub<Sym(24)| (1,3,5,7,9,11)(2,12,10,8,6,4)(13,23,21,19,17,15)(14,16,18,20,22,24), (1,6)(2,9)(3,8)(4,11)(5,10)(7,12)(13,20)(14,19)(15,22)(16,21)(17,24)(18,23), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,16,7,22)(2,21,8,15)(3,14,9,20)(4,19,10,13)(5,24,11,18)(6,17,12,23)>;
G:=Group( (1,3,5,7,9,11)(2,12,10,8,6,4)(13,23,21,19,17,15)(14,16,18,20,22,24), (1,6)(2,9)(3,8)(4,11)(5,10)(7,12)(13,20)(14,19)(15,22)(16,21)(17,24)(18,23), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,16,7,22)(2,21,8,15)(3,14,9,20)(4,19,10,13)(5,24,11,18)(6,17,12,23) );
G=PermutationGroup([[(1,3,5,7,9,11),(2,12,10,8,6,4),(13,23,21,19,17,15),(14,16,18,20,22,24)], [(1,6),(2,9),(3,8),(4,11),(5,10),(7,12),(13,20),(14,19),(15,22),(16,21),(17,24),(18,23)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,16,7,22),(2,21,8,15),(3,14,9,20),(4,19,10,13),(5,24,11,18),(6,17,12,23)]])
G:=TransitiveGroup(24,206);
D6.4D6 is a maximal subgroup of
Dic3≀C2 C62.12D4 C62.13D4 C62.15D4 D12.34D6 D12⋊23D6 Dic6.24D6 S3×D4⋊2S3 D12⋊12D6 C32⋊2+ 1+4 D18.4D6 C62.8D6 D6.4S32 D6⋊S3⋊S3 D6.6S32 C62.91D6 C62.96D6
D6.4D6 is a maximal quotient of
C62.8C23 Dic3.Dic6 C62.31C23 C62.32C23 C62.40C23 C62.48C23 D6.9D12 D6⋊2Dic6 C62.72C23 C62.85C23 C62.98C23 C62.99C23 C62.101C23 C62.57D4 C62.111C23 C62.112C23 C62.115C23 C62⋊7D4 C62⋊4Q8 D18.4D6 C62.9D6 D6.4S32 D6⋊S3⋊S3 D6.6S32 C62.91D6 C62.96D6
Matrix representation of D6.4D6 ►in GL4(𝔽5) generated by
1 | 0 | 0 | 4 |
0 | 1 | 2 | 0 |
0 | 2 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 2 | 0 |
4 | 0 | 0 | 0 |
3 | 0 | 0 | 2 |
0 | 4 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 1 | 0 | 0 |
2 | 0 | 0 | 3 |
G:=sub<GL(4,GF(5))| [1,0,0,1,0,1,2,0,0,2,0,0,4,0,0,0],[0,0,3,0,0,0,0,4,2,0,0,0,0,4,0,0],[0,4,3,0,0,0,0,4,2,0,0,0,0,0,2,0],[2,0,0,2,0,0,1,0,0,4,0,0,0,0,0,3] >;
D6.4D6 in GAP, Magma, Sage, TeX
D_6._4D_6
% in TeX
G:=Group("D6.4D6");
// GroupNames label
G:=SmallGroup(144,148);
// by ID
G=gap.SmallGroup(144,148);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,218,116,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=1,c^6=d^2=a^3,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a*b,d*b*d^-1=a^4*b,d*c*d^-1=c^5>;
// generators/relations
Export