direct product, metabelian, supersoluble, monomial
Aliases: C2×D6⋊S3, D6⋊4D6, C62.10C22, (C3×C6)⋊2D4, C32⋊4(C2×D4), C6⋊2(C3⋊D4), C22.10S32, (C2×C6).15D6, (S3×C6)⋊5C22, (C22×S3)⋊2S3, C6.14(C22×S3), (C3×C6).14C23, C3⋊Dic3⋊5C22, (S3×C2×C6)⋊1C2, C2.14(C2×S32), C3⋊3(C2×C3⋊D4), (C2×C3⋊Dic3)⋊6C2, SmallGroup(144,150)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D6⋊S3
G = < a,b,c,d,e | a2=b6=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b3c, ede=d-1 >
Subgroups: 352 in 116 conjugacy classes, 40 normal (8 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C32, Dic3, D6, D6, C2×C6, C2×C6, C2×D4, C3×S3, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C3⋊Dic3, S3×C6, S3×C6, C62, C2×C3⋊D4, D6⋊S3, C2×C3⋊Dic3, S3×C2×C6, C2×D6⋊S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, S32, C2×C3⋊D4, D6⋊S3, C2×S32, C2×D6⋊S3
Character table of C2×D6⋊S3
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 6O | 6P | 6Q | |
size | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 2 | 2 | 4 | 18 | 18 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | -2 | -1 | 1 | -2 | 2 | 1 | -1 | 1 | -1 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | -1 | 2 | -1 | 0 | 0 | -2 | 1 | 2 | -2 | 1 | -1 | 1 | -1 | 1 | 0 | 1 | 1 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | 0 | 0 | -2 | 1 | 2 | -2 | 1 | -1 | 1 | -1 | 1 | 0 | -1 | -1 | 0 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | -1 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ16 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | -1 | 2 | -1 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | -2 | -1 | 1 | -2 | 2 | 1 | -1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | -2 | 1 | -1 | 2 | -2 | 1 | 1 | -1 | -√-3 | 0 | 0 | √-3 | 0 | 0 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | 1 | 1 | -2 | -2 | -1 | 1 | 1 | √-3 | 0 | 0 | -√-3 | 0 | 0 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -2 | 1 | -2 | 2 | -1 | 1 | 1 | 1 | -1 | 0 | -√-3 | √-3 | 0 | -√-3 | √-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 2 | -1 | -2 | -2 | 1 | 1 | -1 | 1 | 1 | 0 | √-3 | -√-3 | 0 | -√-3 | √-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 2 | -1 | -2 | -2 | 1 | 1 | -1 | 1 | 1 | 0 | -√-3 | √-3 | 0 | √-3 | -√-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -2 | 1 | -2 | 2 | -1 | 1 | 1 | 1 | -1 | 0 | √-3 | -√-3 | 0 | √-3 | -√-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | 1 | 1 | -2 | -2 | -1 | 1 | 1 | -√-3 | 0 | 0 | √-3 | 0 | 0 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | -2 | 1 | -1 | 2 | -2 | 1 | 1 | -1 | √-3 | 0 | 0 | -√-3 | 0 | 0 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ27 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ28 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -2 | 2 | 2 | -2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D6⋊S3, Schur index 2 |
ρ30 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D6⋊S3, Schur index 2 |
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 22)(2 21)(3 20)(4 19)(5 24)(6 23)(7 16)(8 15)(9 14)(10 13)(11 18)(12 17)(25 43)(26 48)(27 47)(28 46)(29 45)(30 44)(31 37)(32 42)(33 41)(34 40)(35 39)(36 38)
(1 3 5)(2 4 6)(7 9 11)(8 10 12)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 35 33)(32 36 34)(37 39 41)(38 40 42)(43 45 47)(44 46 48)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)
G:=sub<Sym(48)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,22)(2,21)(3,20)(4,19)(5,24)(6,23)(7,16)(8,15)(9,14)(10,13)(11,18)(12,17)(25,43)(26,48)(27,47)(28,46)(29,45)(30,44)(31,37)(32,42)(33,41)(34,40)(35,39)(36,38), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)>;
G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,22)(2,21)(3,20)(4,19)(5,24)(6,23)(7,16)(8,15)(9,14)(10,13)(11,18)(12,17)(25,43)(26,48)(27,47)(28,46)(29,45)(30,44)(31,37)(32,42)(33,41)(34,40)(35,39)(36,38), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42) );
G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,22),(2,21),(3,20),(4,19),(5,24),(6,23),(7,16),(8,15),(9,14),(10,13),(11,18),(12,17),(25,43),(26,48),(27,47),(28,46),(29,45),(30,44),(31,37),(32,42),(33,41),(34,40),(35,39),(36,38)], [(1,3,5),(2,4,6),(7,9,11),(8,10,12),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,35,33),(32,36,34),(37,39,41),(38,40,42),(43,45,47),(44,46,48)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42)]])
C2×D6⋊S3 is a maximal subgroup of
C62.3D4 C62.49C23 C62.55C23 D6.9D12 C62.72C23 C62.75C23 D6⋊D12 D6⋊2D12 C62.82C23 C62.83C23 C62.84C23 C62.85C23 D6⋊4D12 C62.112C23 C62⋊4D4 C62.121C23 C62⋊7D4 C62.12D4 D12⋊12D6 C2×S3×C3⋊D4
C2×D6⋊S3 is a maximal quotient of
D12.30D6 D12⋊20D6 D12.32D6 D6⋊6Dic6 C62.33C23 C62.43C23 D6⋊2D12 C62.84C23 C62.56D4 C62⋊4D4 C62⋊7D4
Matrix representation of C2×D6⋊S3 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 1 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -1 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | -1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C2×D6⋊S3 in GAP, Magma, Sage, TeX
C_2\times D_6\rtimes S_3
% in TeX
G:=Group("C2xD6:S3");
// GroupNames label
G:=SmallGroup(144,150);
// by ID
G=gap.SmallGroup(144,150);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,121,490,3461]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^6=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^3*c,e*d*e=d^-1>;
// generators/relations
Export