Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=C2×C4

Direct product G=N×Q with N=C3⋊S3 and Q=C2×C4
dρLabelID
C2×C4×C3⋊S372C2xC4xC3:S3144,169

Semidirect products G=N:Q with N=C3⋊S3 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
C3⋊S31(C2×C4) = C4×S32φ: C2×C4/C4C2 ⊆ Out C3⋊S3244C3:S3:1(C2xC4)144,143
C3⋊S32(C2×C4) = C2×C6.D6φ: C2×C4/C22C2 ⊆ Out C3⋊S324C3:S3:2(C2xC4)144,149
C3⋊S33(C2×C4) = C22×C32⋊C4φ: C2×C4/C22C2 ⊆ Out C3⋊S324C3:S3:3(C2xC4)144,191

Non-split extensions G=N.Q with N=C3⋊S3 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
C3⋊S3.1(C2×C4) = C2×F9φ: C2×C4/C2C4 ⊆ Out C3⋊S3188+C3:S3.1(C2xC4)144,185
C3⋊S3.2(C2×C4) = S32⋊C4φ: C2×C4/C2C22 ⊆ Out C3⋊S3124+C3:S3.2(C2xC4)144,115
C3⋊S3.3(C2×C4) = C3⋊S3.Q8φ: C2×C4/C2C22 ⊆ Out C3⋊S3244C3:S3.3(C2xC4)144,116
C3⋊S3.4(C2×C4) = C2.PSU3(𝔽2)φ: C2×C4/C2C22 ⊆ Out C3⋊S3248+C3:S3.4(C2xC4)144,120
C3⋊S3.5(C2×C4) = C4×C32⋊C4φ: C2×C4/C4C2 ⊆ Out C3⋊S3244C3:S3.5(C2xC4)144,132

׿
×
𝔽