non-abelian, soluble, monomial
Aliases: C3⋊S3.Q8, C2.2S3≀C2, C32⋊C4⋊1C4, (C3×C6).2D4, C32⋊1(C4⋊C4), C6.D6.2C2, C3⋊S3.3(C2×C4), (C2×C32⋊C4).1C2, (C2×C3⋊S3).2C22, SmallGroup(144,116)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊S3 — C3⋊S3.Q8 |
C1 — C32 — C3⋊S3 — C2×C3⋊S3 — C6.D6 — C3⋊S3.Q8 |
C32 — C3⋊S3 — C3⋊S3.Q8 |
Generators and relations for C3⋊S3.Q8
G = < a,b,c,d,e | a3=b3=c2=d4=1, e2=d2, ab=ba, cac=dbd-1=a-1, dad-1=cbc=ebe-1=b-1, ae=ea, cd=dc, ce=ec, ede-1=cd-1 >
Character table of C3⋊S3.Q8
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 9 | 9 | 4 | 4 | 6 | 6 | 6 | 6 | 18 | 18 | 4 | 4 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -1 | 1 | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | 1 | i | i | -i | -i | 1 | -1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | 1 | -i | -i | i | i | 1 | -1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | -1 | 1 | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ11 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | 2 | 0 | 2 | 0 | 0 | -2 | 1 | -1 | 0 | 0 | -1 | orthogonal lifted from S3≀C2 |
ρ12 | 4 | 4 | 0 | 0 | -2 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 1 | -2 | 0 | -1 | -1 | 0 | orthogonal lifted from S3≀C2 |
ρ13 | 4 | 4 | 0 | 0 | -2 | 1 | -2 | 0 | -2 | 0 | 0 | 0 | 1 | -2 | 0 | 1 | 1 | 0 | orthogonal lifted from S3≀C2 |
ρ14 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | -2 | 0 | -2 | 0 | 0 | -2 | 1 | 1 | 0 | 0 | 1 | orthogonal lifted from S3≀C2 |
ρ15 | 4 | -4 | 0 | 0 | -2 | 1 | -2i | 0 | 2i | 0 | 0 | 0 | -1 | 2 | 0 | i | -i | 0 | complex faithful |
ρ16 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | -2i | 0 | 2i | 0 | 0 | 2 | -1 | i | 0 | 0 | -i | complex faithful |
ρ17 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 2i | 0 | -2i | 0 | 0 | 2 | -1 | -i | 0 | 0 | i | complex faithful |
ρ18 | 4 | -4 | 0 | 0 | -2 | 1 | 2i | 0 | -2i | 0 | 0 | 0 | -1 | 2 | 0 | -i | i | 0 | complex faithful |
(1 20 15)(3 18 13)(6 11 24)(8 9 22)
(2 16 17)(4 14 19)(5 23 10)(7 21 12)
(1 3)(2 4)(5 12)(6 9)(7 10)(8 11)(13 20)(14 17)(15 18)(16 19)(21 23)(22 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 24 3 22)(2 21 4 23)(5 16 7 14)(6 18 8 20)(9 15 11 13)(10 17 12 19)
G:=sub<Sym(24)| (1,20,15)(3,18,13)(6,11,24)(8,9,22), (2,16,17)(4,14,19)(5,23,10)(7,21,12), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,21,4,23)(5,16,7,14)(6,18,8,20)(9,15,11,13)(10,17,12,19)>;
G:=Group( (1,20,15)(3,18,13)(6,11,24)(8,9,22), (2,16,17)(4,14,19)(5,23,10)(7,21,12), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,21,4,23)(5,16,7,14)(6,18,8,20)(9,15,11,13)(10,17,12,19) );
G=PermutationGroup([[(1,20,15),(3,18,13),(6,11,24),(8,9,22)], [(2,16,17),(4,14,19),(5,23,10),(7,21,12)], [(1,3),(2,4),(5,12),(6,9),(7,10),(8,11),(13,20),(14,17),(15,18),(16,19),(21,23),(22,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,24,3,22),(2,21,4,23),(5,16,7,14),(6,18,8,20),(9,15,11,13),(10,17,12,19)]])
G:=TransitiveGroup(24,214);
(1 13 18)(3 15 20)(6 11 22)(8 9 24)
(2 19 14)(4 17 16)(5 21 10)(7 23 12)
(5 10)(6 11)(7 12)(8 9)(13 18)(14 19)(15 20)(16 17)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 24 3 22)(2 23 4 21)(5 19 7 17)(6 13 8 15)(9 20 11 18)(10 14 12 16)
G:=sub<Sym(24)| (1,13,18)(3,15,20)(6,11,22)(8,9,24), (2,19,14)(4,17,16)(5,21,10)(7,23,12), (5,10)(6,11)(7,12)(8,9)(13,18)(14,19)(15,20)(16,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,19,7,17)(6,13,8,15)(9,20,11,18)(10,14,12,16)>;
G:=Group( (1,13,18)(3,15,20)(6,11,22)(8,9,24), (2,19,14)(4,17,16)(5,21,10)(7,23,12), (5,10)(6,11)(7,12)(8,9)(13,18)(14,19)(15,20)(16,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,19,7,17)(6,13,8,15)(9,20,11,18)(10,14,12,16) );
G=PermutationGroup([[(1,13,18),(3,15,20),(6,11,22),(8,9,24)], [(2,19,14),(4,17,16),(5,21,10),(7,23,12)], [(5,10),(6,11),(7,12),(8,9),(13,18),(14,19),(15,20),(16,17)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,24,3,22),(2,23,4,21),(5,19,7,17),(6,13,8,15),(9,20,11,18),(10,14,12,16)]])
G:=TransitiveGroup(24,216);
C3⋊S3.Q8 is a maximal subgroup of
PSU3(𝔽2)⋊C4 F9⋊C4 S32⋊Q8 C32⋊C4⋊Q8 C4×S3≀C2 C62.9D4 C62⋊D4 C33⋊C4⋊C4 (C3×C6).9D12
C3⋊S3.Q8 is a maximal quotient of
C32⋊C4⋊C8 C4.19S3≀C2 C62.D4 C62.6D4 C62.7D4 C6.S3≀C2 C33⋊C4⋊C4 (C3×C6).9D12
Matrix representation of C3⋊S3.Q8 ►in GL4(𝔽5) generated by
4 | 0 | 1 | 0 |
0 | 0 | 3 | 4 |
4 | 0 | 0 | 0 |
2 | 1 | 3 | 4 |
4 | 2 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 2 | 0 | 3 |
2 | 1 | 3 | 4 |
4 | 0 | 0 | 2 |
0 | 0 | 2 | 1 |
0 | 3 | 0 | 2 |
0 | 0 | 0 | 1 |
3 | 0 | 0 | 4 |
0 | 3 | 0 | 2 |
0 | 0 | 3 | 4 |
0 | 0 | 0 | 2 |
2 | 1 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 1 | 0 | 4 |
0 | 3 | 1 | 0 |
G:=sub<GL(4,GF(5))| [4,0,4,2,0,0,0,1,1,3,0,3,0,4,0,4],[4,2,0,2,2,0,2,1,0,0,0,3,0,0,3,4],[4,0,0,0,0,0,3,0,0,2,0,0,2,1,2,1],[3,0,0,0,0,3,0,0,0,0,3,0,4,2,4,2],[2,0,0,0,1,3,1,3,0,0,0,1,0,0,4,0] >;
C3⋊S3.Q8 in GAP, Magma, Sage, TeX
C_3\rtimes S_3.Q_8
% in TeX
G:=Group("C3:S3.Q8");
// GroupNames label
G:=SmallGroup(144,116);
// by ID
G=gap.SmallGroup(144,116);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,48,73,55,964,730,256,299,881]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^4=1,e^2=d^2,a*b=b*a,c*a*c=d*b*d^-1=a^-1,d*a*d^-1=c*b*c=e*b*e^-1=b^-1,a*e=e*a,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations
Export
Subgroup lattice of C3⋊S3.Q8 in TeX
Character table of C3⋊S3.Q8 in TeX