direct product, metabelian, soluble, monomial, A-group
Aliases: C2×F9, C3⋊S3⋊C8, (C3×C6)⋊C8, C32⋊(C2×C8), C32⋊C4.C4, C32⋊C4.2C22, (C2×C3⋊S3).C4, C3⋊S3.1(C2×C4), (C2×C32⋊C4).4C2, SmallGroup(144,185)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊S3 — C32⋊C4 — F9 — C2×F9 |
C32 — C2×F9 |
Generators and relations for C2×F9
G = < a,b,c,d | a2=b3=c3=d8=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >
Character table of C2×F9
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 6 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 9 | 9 | 8 | 9 | 9 | 9 | 9 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -i | i | -i | -i | i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | i | -i | i | i | -i | -i | i | -i | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ9 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | ζ85 | ζ83 | ζ85 | ζ8 | ζ83 | ζ87 | ζ8 | ζ87 | linear of order 8 |
ρ10 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | ζ8 | ζ87 | ζ8 | ζ85 | ζ87 | ζ83 | ζ85 | ζ83 | linear of order 8 |
ρ11 | 1 | 1 | -1 | -1 | 1 | -i | -i | i | i | 1 | ζ83 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | ζ85 | linear of order 8 |
ρ12 | 1 | 1 | -1 | -1 | 1 | -i | -i | i | i | 1 | ζ87 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | ζ8 | linear of order 8 |
ρ13 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | ζ87 | ζ8 | ζ87 | ζ83 | ζ8 | ζ85 | ζ83 | ζ85 | linear of order 8 |
ρ14 | 1 | 1 | -1 | -1 | 1 | i | i | -i | -i | 1 | ζ8 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | ζ87 | linear of order 8 |
ρ15 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | ζ83 | ζ85 | ζ83 | ζ87 | ζ85 | ζ8 | ζ87 | ζ8 | linear of order 8 |
ρ16 | 1 | 1 | -1 | -1 | 1 | i | i | -i | -i | 1 | ζ85 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | ζ83 | linear of order 8 |
ρ17 | 8 | -8 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ18 | 8 | 8 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from F9 |
(1 2)(3 17)(4 18)(5 11)(6 12)(7 13)(8 14)(9 15)(10 16)
(1 18 14)(2 4 8)(3 16 5)(6 13 15)(7 9 12)(10 11 17)
(1 5 9)(2 11 15)(3 12 18)(4 17 6)(7 14 16)(8 10 13)
(1 2)(3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18)
G:=sub<Sym(18)| (1,2)(3,17)(4,18)(5,11)(6,12)(7,13)(8,14)(9,15)(10,16), (1,18,14)(2,4,8)(3,16,5)(6,13,15)(7,9,12)(10,11,17), (1,5,9)(2,11,15)(3,12,18)(4,17,6)(7,14,16)(8,10,13), (1,2)(3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18)>;
G:=Group( (1,2)(3,17)(4,18)(5,11)(6,12)(7,13)(8,14)(9,15)(10,16), (1,18,14)(2,4,8)(3,16,5)(6,13,15)(7,9,12)(10,11,17), (1,5,9)(2,11,15)(3,12,18)(4,17,6)(7,14,16)(8,10,13), (1,2)(3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18) );
G=PermutationGroup([[(1,2),(3,17),(4,18),(5,11),(6,12),(7,13),(8,14),(9,15),(10,16)], [(1,18,14),(2,4,8),(3,16,5),(6,13,15),(7,9,12),(10,11,17)], [(1,5,9),(2,11,15),(3,12,18),(4,17,6),(7,14,16),(8,10,13)], [(1,2),(3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18)]])
G:=TransitiveGroup(18,59);
(1 6)(2 7)(3 8)(4 5)(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)
(1 23 19)(2 20 24)(4 22 18)(5 10 14)(6 11 15)(7 16 12)
(1 23 19)(2 24 20)(3 21 17)(6 11 15)(7 12 16)(8 9 13)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (1,6)(2,7)(3,8)(4,5)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,23,19)(2,20,24)(4,22,18)(5,10,14)(6,11,15)(7,16,12), (1,23,19)(2,24,20)(3,21,17)(6,11,15)(7,12,16)(8,9,13), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;
G:=Group( (1,6)(2,7)(3,8)(4,5)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,23,19)(2,20,24)(4,22,18)(5,10,14)(6,11,15)(7,16,12), (1,23,19)(2,24,20)(3,21,17)(6,11,15)(7,12,16)(8,9,13), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,5),(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20)], [(1,23,19),(2,20,24),(4,22,18),(5,10,14),(6,11,15),(7,16,12)], [(1,23,19),(2,24,20),(3,21,17),(6,11,15),(7,12,16),(8,9,13)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,255);
(1 5)(2 6)(3 7)(4 8)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)
(2 23 12)(3 24 13)(4 14 17)(6 16 19)(7 9 20)(8 21 10)
(1 22 11)(3 24 13)(4 17 14)(5 15 18)(7 9 20)(8 10 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (1,5)(2,6)(3,7)(4,8)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (2,23,12)(3,24,13)(4,14,17)(6,16,19)(7,9,20)(8,21,10), (1,22,11)(3,24,13)(4,17,14)(5,15,18)(7,9,20)(8,10,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (2,23,12)(3,24,13)(4,14,17)(6,16,19)(7,9,20)(8,21,10), (1,22,11)(3,24,13)(4,17,14)(5,15,18)(7,9,20)(8,10,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23)], [(2,23,12),(3,24,13),(4,14,17),(6,16,19),(7,9,20),(8,21,10)], [(1,22,11),(3,24,13),(4,17,14),(5,15,18),(7,9,20),(8,10,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,256);
C2×F9 is a maximal subgroup of
C2.AΓL1(𝔽9) PSU3(𝔽2)⋊C4 F9⋊C4 C4⋊F9 C22⋊F9
C2×F9 is a maximal quotient of C4.3F9 C4.F9 C4⋊F9 C22.F9 C22⋊F9
Matrix representation of C2×F9 ►in GL8(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
-1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(8,Integers())| [-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[0,0,-1,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0],[0,1,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0],[1,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1,1,0,1,0,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,1,0,-1,0] >;
C2×F9 in GAP, Magma, Sage, TeX
C_2\times F_9
% in TeX
G:=Group("C2xF9");
// GroupNames label
G:=SmallGroup(144,185);
// by ID
G=gap.SmallGroup(144,185);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,24,50,1444,856,142,4037,1169,455]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations
Export
Subgroup lattice of C2×F9 in TeX
Character table of C2×F9 in TeX