extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C2×C6) = C3×D4⋊S3 | φ: C2×C6/C3 → C22 ⊆ Aut C12 | 24 | 4 | C12.1(C2xC6) | 144,80 |
C12.2(C2×C6) = C3×D4.S3 | φ: C2×C6/C3 → C22 ⊆ Aut C12 | 24 | 4 | C12.2(C2xC6) | 144,81 |
C12.3(C2×C6) = C3×Q8⋊2S3 | φ: C2×C6/C3 → C22 ⊆ Aut C12 | 48 | 4 | C12.3(C2xC6) | 144,82 |
C12.4(C2×C6) = C3×C3⋊Q16 | φ: C2×C6/C3 → C22 ⊆ Aut C12 | 48 | 4 | C12.4(C2xC6) | 144,83 |
C12.5(C2×C6) = C3×D4⋊2S3 | φ: C2×C6/C3 → C22 ⊆ Aut C12 | 24 | 4 | C12.5(C2xC6) | 144,163 |
C12.6(C2×C6) = C3×S3×Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C12 | 48 | 4 | C12.6(C2xC6) | 144,164 |
C12.7(C2×C6) = C3×Q8⋊3S3 | φ: C2×C6/C3 → C22 ⊆ Aut C12 | 48 | 4 | C12.7(C2xC6) | 144,165 |
C12.8(C2×C6) = C3×C24⋊C2 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 48 | 2 | C12.8(C2xC6) | 144,71 |
C12.9(C2×C6) = C3×D24 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 48 | 2 | C12.9(C2xC6) | 144,72 |
C12.10(C2×C6) = C3×Dic12 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 48 | 2 | C12.10(C2xC6) | 144,73 |
C12.11(C2×C6) = C6×Dic6 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 48 | | C12.11(C2xC6) | 144,158 |
C12.12(C2×C6) = C3×C4○D12 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 24 | 2 | C12.12(C2xC6) | 144,161 |
C12.13(C2×C6) = S3×C24 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 48 | 2 | C12.13(C2xC6) | 144,69 |
C12.14(C2×C6) = C3×C8⋊S3 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 48 | 2 | C12.14(C2xC6) | 144,70 |
C12.15(C2×C6) = C6×C3⋊C8 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 48 | | C12.15(C2xC6) | 144,74 |
C12.16(C2×C6) = C3×C4.Dic3 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 24 | 2 | C12.16(C2xC6) | 144,75 |
C12.17(C2×C6) = C9×D8 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.17(C2xC6) | 144,25 |
C12.18(C2×C6) = C9×SD16 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.18(C2xC6) | 144,26 |
C12.19(C2×C6) = C9×Q16 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 144 | 2 | C12.19(C2xC6) | 144,27 |
C12.20(C2×C6) = D4×C18 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 72 | | C12.20(C2xC6) | 144,48 |
C12.21(C2×C6) = Q8×C18 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 144 | | C12.21(C2xC6) | 144,49 |
C12.22(C2×C6) = C9×C4○D4 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.22(C2xC6) | 144,50 |
C12.23(C2×C6) = C32×D8 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 72 | | C12.23(C2xC6) | 144,106 |
C12.24(C2×C6) = C32×SD16 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 72 | | C12.24(C2xC6) | 144,107 |
C12.25(C2×C6) = C32×Q16 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 144 | | C12.25(C2xC6) | 144,108 |
C12.26(C2×C6) = Q8×C3×C6 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 144 | | C12.26(C2xC6) | 144,180 |
C12.27(C2×C6) = C32×C4○D4 | φ: C2×C6/C6 → C2 ⊆ Aut C12 | 72 | | C12.27(C2xC6) | 144,181 |
C12.28(C2×C6) = C9×M4(2) | central extension (φ=1) | 72 | 2 | C12.28(C2xC6) | 144,24 |
C12.29(C2×C6) = C32×M4(2) | central extension (φ=1) | 72 | | C12.29(C2xC6) | 144,105 |